

Full wwPDB X-ray Structure Validation Report (i)

Aug 22, 2020 – 10:18 PM BST

PDB ID	:	7BVH
Title	:	Crystal structure of arabinosyltransferase EmbC2-AcpM2 complex from
		Mycobacterium smegmatis complexed with di-arabinose
Authors	:	Zhao, Y.; Zhang, L.; Wu, L.J.; Wang, Q.; Li, J.; Besra, G.S.; Rao, Z.H.
Deposited on	:	2020-04-10
Resolution	:	3.30 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	÷	4.02b-467
Mogul		1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.13.1
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.13.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1149 (3.34-3.26)
Clashscore	141614	1205 (3.34-3.26)
Ramachandran outliers	138981	1183 (3.34-3.26)
Sidechain outliers	138945	1182(3.34-3.26)
RSRZ outliers	127900	1115(3.34-3.26)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain				
1	Δ	1112	7%				70/
	A	1115	64%	25%		•	7%
1	В	1113	63%	27%		·	7%
			3%				
2	С	99	62%	22%	•	15%)
	5		12%				
2	D	99	68%	14%	•	15%)
3	E	2	50%	50%			
3	J	2	100%				

Mol	Chain	Length	Quality of cl	hain
4	F	2	100%	
4	G	2	50%	50%
4	Н	2	100%	
4	Ι	2	100%	
4	К	2	100%	
4	L	2	100%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	GLC	G	2	-	-	Х	-
4	GLC	L	2	-	-	Х	-
6	PO4	В	1202	-	-	-	Х
7	BXY	А	1203	-	Х	-	-
7	BXY	В	1204	-	-	Х	-

7BVH

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 17316 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Integral membrane indolylacetylinositol arabinosyltransferase EmbC.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	1035	Total 7900	C 5101	N 1373	O 1400	S 26	0	0	0
1	В	1035	Total 7900	C 5101	N 1373	O 1400	S 26	0	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
А	-12	MET	-	initiating methionine	UNP I7FMU5
А	-11	PRO	-	expression tag	UNP I7FMU5
А	-10	GLU	-	expression tag	UNP I7FMU5
А	-9	VAL	-	expression tag	UNP I7FMU5
А	-8	VAL	-	expression tag	UNP I7FMU5
A	-7	GLY	-	expression tag	UNP I7FMU5
A	-6	SER	-	expression tag	UNP I7FMU5
А	-5	TYR	-	expression tag	UNP I7FMU5
A	-4	PHE	-	expression tag	UNP I7FMU5
A	-3	GLN	-	expression tag	UNP I7FMU5
A	-2	SER	-	expression tag	UNP I7FMU5
A	-1	ASN	-	expression tag	UNP I7FMU5
A	0	ALA	_	expression tag	UNP I7FMU5
А	1075	HIS	-	expression tag	UNP I7FMU5
A	1076	LEU	-	expression tag	UNP I7FMU5
А	1077	GLY	-	expression tag	UNP I7FMU5
A	1078	GLY	-	expression tag	UNP I7FMU5
A	1079	ILE	-	expression tag	UNP I7FMU5
A	1080	LYS	-	expression tag	UNP I7FMU5
A	1081	ALA	-	expression tag	UNP I7FMU5
A	1082	PHE	-	expression tag	UNP I7FMU5
A	1083	LEU	-	expression tag	UNP I7FMU5
A	1084	GLU	-	expression tag	UNP I7FMU5
A	1085	VAL	_	expression tag	UNP I7FMU5

There are 78 discrepancies between the modelled and reference sequences:

7.	В	V	H	L

Chain	Residue	Modelled	Actual	Comment	Reference
A	1086	LEU	_	expression tag	UNP I7FMU5
A	1087	PHE	_	expression tag	UNP I7FMU5
A	1088	GLN	-	expression tag	UNP I7FMU5
A	1089	GLY	-	expression tag	UNP I7FMU5
A	1090	PRO	_	expression tag	UNP I7FMU5
A	1091	HIS	_	expression tag	UNP I7FMU5
A	1092	HIS	_	expression tag	UNP I7FMU5
A	1093	HIS	-	expression tag	UNP I7FMU5
A	1094	HIS	-	expression tag	UNP I7FMU5
A	1095	HIS	-	expression tag	UNP I7FMU5
A	1096	HIS	-	expression tag	UNP I7FMU5
A	1097	HIS	-	expression tag	UNP I7FMU5
А	1098	HIS	-	expression tag	UNP I7FMU5
A	1099	HIS	-	expression tag	UNP I7FMU5
А	1100	HIS	_	expression tag	UNP I7FMU5
В	-12	MET	-	initiating methionine	UNP I7FMU5
В	-11	PRO	-	expression tag	UNP I7FMU5
В	-10	GLU	-	expression tag	UNP I7FMU5
В	-9	VAL	-	expression tag	UNP I7FMU5
В	-8	VAL	-	expression tag	UNP I7FMU5
В	-7	GLY	-	expression tag	UNP I7FMU5
В	-6	SER	-	expression tag	UNP I7FMU5
В	-5	TYR	-	expression tag	UNP I7FMU5
В	-4	PHE	-	expression tag	UNP I7FMU5
В	-3	GLN	-	expression tag	UNP I7FMU5
В	-2	SER	-	expression tag	UNP I7FMU5
В	-1	ASN	-	expression tag	UNP I7FMU5
В	0	ALA	-	expression tag	UNP I7FMU5
В	1075	HIS	-	expression tag	UNP I7FMU5
B	1076	LEU	-	expression tag	UNP I7FMU5
В	1077	GLY	-	expression tag	UNP I7FMU5
B	1078	GLY	-	expression tag	UNP I7FMU5
В	1079	ILE	-	expression tag	UNP I7FMU5
В	1080	LYS	-	expression tag	UNP I7FMU5
В	1081	ALA	-	expression tag	UNP I7FMU5
B	1082	PHE	-	expression tag	UNP I7FMU5
В	1083	LEU	-	expression tag	UNP I7FMU5
B	1084	GLU	-	expression tag	UNP I7FMU5
B	1085	VAL	-	expression tag	UNP I7FMU5
B	1086	LEU	-	expression tag	UNP I7FMU5
B	1087	PHE	-	expression tag	UNP I7FMU5
B	1088	GLN	-	expression tag	UNP I7FMU5

7B'	VΗ
-----	----

Chain	Residue	Modelled	Actual	Comment	Reference
В	1089	GLY	-	expression tag	UNP I7FMU5
В	1090	PRO	-	expression tag	UNP I7FMU5
В	1091	HIS	-	expression tag	UNP I7FMU5
В	1092	HIS	-	expression tag	UNP I7FMU5
В	1093	HIS	-	expression tag	UNP I7FMU5
В	1094	HIS	-	expression tag	UNP I7FMU5
В	1095	HIS	-	expression tag	UNP I7FMU5
В	1096	HIS	-	expression tag	UNP I7FMU5
В	1097	HIS	-	expression tag	UNP I7FMU5
В	1098	HIS	-	expression tag	UNP I7FMU5
В	1099	HIS	-	expression tag	UNP I7FMU5
В	1100	HIS	-	expression tag	UNP I7FMU5

• Molecule 2 is a protein called Meromycolate extension acyl carrier protein.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
2 C	C	84	Total	С	Ν	0	\mathbf{S}	0	0	0
	U		644	403	95	145	1			
2 D	п	84	Total	С	Ν	0	S	0	0	0
	D		644	403	95	145	1			0

• Molecule 3 is an oligosaccharide called alpha-D-arabinofuranose-(1-5)-alpha-D-arabinofuran ose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
3	Е	2	Total 19	C 10	O 9	0	0	0
3	J	2	Total 19	C 10	0 9	0	0	0

• Molecule 4 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-beta-D-glucopyranose.

7BVI	Η
------	---

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	F	2	Total C O 23 12 11	0	0	0
4	G	2	Total C O 23 12 11	0	0	0
4	Н	2	Total C O 23 12 11	0	0	0
4	Ι	2	Total C O 23 12 11	0	0	0
4	K	2	Total C O 23 12 11	0	0	0
4	L	2	Total C O 23 12 11	0	0	0

• Molecule 5 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	esidues Atoms		AltConf
5	В	1	Total Ca 1 1	0	0
5	А	1	Total Ca 1 1	0	0

• Molecule 6 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P) (labeled as "Ligand of Interest" by author).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
6	А	1	Total 5	0 4	Р 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 7 is alpha-D-arabinofuranose (three-letter code: BXY) (formula: $C_5H_{10}O_5$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	Total C O 10 5 5	0	0
7	А	1	Total C O 10 5 5	0	0
7	В	1	$\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 10 & 5 & 5 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 10 5 5 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Integral membrane indolylacetylinositol arabinosyltransferase EmbC

P1067 P1068 P1068 LEU LEU LEU CLEU LEU CLEU C

 \bullet Molecule 1: Integral membrane indoly lacetylinositol arabinosyltransferase EmbC

81039 11044 11044 11044 11044 11064 11065 11075 11065 11075 1105 110
• Molecule 2: Meromycolate extension acyl carrier protein
Chain C: 62% 22% 15%
MET A 3 7 4 7 4 7 4 7 4 8 5 8 5 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
• Molecule 2: Meromycolate extension acyl carrier protein
Chain D: 68% 14% • 15%
MET ALA 43 43 43 43 43 43 44 11 53 53 53 53 54 11 53 53 53 53 54 11 53 53 53 53 54 11 53 53 53 53 54 11 55 53 53 56 56 56 56 56 56 56 56 56 56 56 56 56
Chain E: 50% 50%
• Molecule 3: alpha-D-arabinofuranose-(1-5)-alpha-D-arabinofuranose
Chain J: 100%
EXX3
Chain F: 100%
BGC1 GLC2
Chain G: 50% 50%
B6C1
• Molecule 4: alpha-D-glucopyranose-(1-4)-beta-D-glucopyranose
Chain H: 100%

BGC1 GLC2

• Molecule 4: alpha-D-glucopyranose-(1-4)-beta-D-glucopyranose

Chain I:	100%
BGC1 GLC2	
• Molecule 4: alpha-D-glucopyranose-(2	1-4)-beta-D-glucopyranose
Chain K:	100%
BGC1 GLC2	
• Molecule 4: alpha-D-glucopyranose-(1	1-4)-beta-D-glucopyranose
Chain L:	100%

BGC1 GLC2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	121.08Å 176.33Å 207.77Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{Bosolution} \left(\overset{\circ}{\mathbf{A}} \right)$	49.67 - 3.30	Depositor
Resolution (A)	49.67 - 3.30	EDS
% Data completeness	$100.0 \ (49.67 - 3.30)$	Depositor
(in resolution range $)$	$100.0\ (49.67 - 3.30)$	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	0.11	Depositor
$< I/\sigma(I) > 1$	$1.37 (at 3.33 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.3	Depositor
D D .	0.232 , 0.265	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.265 , 0.300	DCC
R_{free} test set	3362 reflections $(4.98%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	33.0	Xtriage
Anisotropy	0.000	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.27, 72.9	EDS
L-test for $twinning^2$	$ \langle L \rangle = 0.46, \langle L^2 \rangle = 0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.78	EDS
Total number of atoms	17316	wwPDB-VP
Average B, all atoms $(Å^2)$	78.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.54% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BXY, CA, GLC, BGC, PO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.52	1/8124~(0.0%)	0.75	2/11137~(0.0%)	
1	В	0.50	0/8124	0.74	1/11137~(0.0%)	
2	С	0.48	0/650	0.71	0/884	
2	D	0.47	0/650	0.68	0/884	
All	All	0.51	1/17548~(0.0%)	0.74	3/24042~(0.0%)	

All (1) bond length outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	А	626	TRP	CB-CG	-5.37	1.40	1.50

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	627	TRP	CA-CB-CG	5.17	123.52	113.70
1	А	627	TRP	C-N-CA	5.01	134.24	121.70
1	В	712	TYR	N-CA-C	5.01	124.52	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7900	0	7935	195	0
1	В	7900	0	7935	209	0
2	С	644	0	626	13	0
2	D	644	0	626	6	0
3	Е	19	0	17	0	0
3	J	19	0	17	0	0
4	F	23	0	21	3	0
4	G	23	0	21	12	0
4	Н	23	0	21	2	0
4	Ι	23	0	19	1	0
4	Κ	23	0	21	0	0
4	L	23	0	21	7	0
5	А	1	0	0	0	0
5	В	1	0	0	0	0
6	А	5	0	0	0	0
6	B	5	0	0	0	0
7	A	20	0	14	4	0
7	B	20	0	14	13	0
All	All	17316	0	17308	437	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (437) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 9	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:B:1204:BXY:O2	4:G:2:GLC:H3	1.31	1.24
4:I:1:BGC:O3	4:I:2:GLC:O2	1.54	1.22
1:A:841:GLN:HG3	1:A:932:LEU:O	1.36	1.21
1:B:543:ILE:HD11	1:B:592:VAL:HG12	1.31	1.09
1:A:719:ARG:HH21	1:A:719:ARG:HG2	1.12	1.07
1:B:635:PRO:HA	4:L:2:GLC:O2	1.57	1.05
7:B:1204:BXY:C2	4:G:2:GLC:H5	1.91	0.99
1:A:628:TYR:OH	1:A:967:VAL:HG12	1.65	0.97
1:A:247:ARG:HB3	2:C:41:SER:HB2	1.43	0.96
1:A:600:LYS:H	7:A:1203:BXY:H1	1.30	0.94
1:A:320:TRP:HZ3	1:A:329:TRP:O	1.49	0.93
7:B:1204:BXY:O2	4:G:2:GLC:C3	2.17	0.93
1:A:841:GLN:CG	1:A:932:LEU:O	2.20	0.90
1:B:247:ARG:HB3	2:D:41:SER:HB2	1.54	0.90
4:F:1:BGC:O6	4:F:2:GLC:O6	1.88	0.89
1:B:635:PRO:CA	4:L:2:GLC:O2	2.20	0.89

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:504:ARG:HH21	1:B:575:HIS:CD2	1.91	0.89
1:A:391:GLY:HA3	1:A:421:THR:HG21	1.59	0.84
1:B:738:VAL:HG12	1:B:1027:THR:HG22	1.58	0.84
1:A:712:TYR:HB2	1:A:713:PRO:HD3	1.57	0.84
1:B:515:GLY:O	1:B:622:THR:HG21	1.77	0.84
1:B:605:ARG:HH12	1:B:672:VAL:HG21	1.41	0.84
1:B:935:GLN:N	1:B:935:GLN:OE1	2.10	0.84
1:A:515:GLY:O	1:A:622:THR:HG21	1.79	0.83
7:B:1204:BXY:H2	4:G:2:GLC:H5	1.60	0.83
1:B:543:ILE:HD11	1:B:592:VAL:CG1	2.07	0.82
1:A:138:CYS:HB2	1:A:139:ARG:HH21	1.45	0.82
1:A:962:MET:HG2	1:A:977:PHE:HE1	1.42	0.82
1:B:635:PRO:HB3	4:L:2:GLC:O2	1.79	0.82
1:A:974:GLN:HE21	1:A:974:GLN:H	1.29	0.80
1:B:925:LEU:HD21	1:B:940:LEU:HD13	1.65	0.79
1:B:94:THR:HG22	1:B:107:LEU:H	1.47	0.78
7:A:1204:BXY:O2	4:H:1:BGC:H1	1.84	0.78
1:A:719:ARG:NH2	1:A:719:ARG:HG2	1.92	0.78
1:B:301:ARG:NH2	1:B:493:GLY:HA2	2.00	0.77
1:B:635:PRO:CB	4:L:2:GLC:O2	2.33	0.76
4:F:1:BGC:O6	4:F:2:GLC:O5	2.04	0.76
1:B:932:LEU:HD22	1:B:932:LEU:H	1.50	0.76
1:A:932:LEU:HD23	1:A:932:LEU:N	2.02	0.75
1:B:277:THR:HG22	1:B:381:GLY:HA3	1.68	0.74
1:B:932:LEU:HD13	1:B:932:LEU:H	1.52	0.74
1:A:302:TRP:HE1	1:A:493:GLY:HA3	1.53	0.74
1:B:605:ARG:NH1	1:B:672:VAL:HG21	2.03	0.73
1:B:847:ARG:HG2	1:B:926:VAL:HG12	1.69	0.73
7:B:1204:BXY:H2	4:G:2:GLC:C5	2.17	0.73
1:A:600:LYS:N	7:A:1203:BXY:H1	2.05	0.72
1:B:635:PRO:HB3	4:L:1:BGC:O3	1.90	0.72
1:B:758:LEU:HA	1:B:848:SER:HB2	1.72	0.71
1:A:302:TRP:HD1	1:A:492:VAL:HG13	1.55	0.71
1:B:847:ARG:CG	1:B:926:VAL:HG12	2.21	0.71
1:A:309:PRO:HA	1:A:473:ILE:HG23	1.70	0.71
1:B:932:LEU:HD13	1:B:932:LEU:N	2.06	0.70
1:A:301:ARG:HH21	1:A:493:GLY:HA2	1.54	0.70
1:A:280:ASP:HB3	1:A:382:LEU:H	1.58	0.69
1:B:520:ARG:NH1	1:B:622:THR:HG23	2.08	0.69
1:A:238:ASP:HB3	1:A:407:ARG:HH11	1.57	0.68
1:A:572:TRP:HB2	1:A:575:HIS:CD2	2.29	0.68

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:61:ILE:HG12	1:A:984:VAL:HG13	1.76	0.68
1:B:932:LEU:HD22	1:B:932:LEU:N	2.08	0.68
1:B:645:PHE:O	7:B:1204:BXY:O3	2.11	0.68
1:A:489:LYS:HD2	4:F:2:GLC:O2	1.94	0.68
1:B:246:LYS:HB3	1:B:249:LEU:HB3	1.77	0.67
1:A:761:VAL:HB	1:A:847:ARG:HB3	1.75	0.67
7:B:1204:BXY:O2	4:G:2:GLC:H5	1.95	0.67
1:A:242:GLY:O	1:A:243:ABG:HB2	1.94	0.66
1:B:392:ILE:HD13	1:B:582:LEU:HG	1.76	0.66
1:A:81:VAL:HG22	1:A:130:LEU:HD22	1.75	0.66
1:A:80:LEU:HB3	1:A:190:LEU:HD11	1.77	0.66
7:B:1204:BXY:C2	4:G:2:GLC:C5	2.71	0.66
1:A:649:THR:HG21	7:A:1204:BXY:O3	1.96	0.66
1:A:302:TRP:CD1	1:A:492:VAL:HG13	2.30	0.65
4:H:2:GLC:O6	4:H:2:GLC:O4	2.08	0.65
1:B:391:GLY:HA3	1:B:421:THR:HG21	1.78	0.65
1:B:480:ALA:HB2	1:B:1065:TRP:HA	1.77	0.65
1:B:330:MET:HA	1:B:330:MET:HE2	1.78	0.65
1:A:70:VAL:HG22	1:A:200:LEU:HD23	1.80	0.64
1:B:302:TRP:HE1	1:B:493:GLY:HA3	1.63	0.64
1:A:63:TYR:HB3	1:A:182:GLN:HG3	1.80	0.64
1:B:248:PHE:HB3	2:D:42:LEU:HB2	1.80	0.64
1:A:36:LEU:HD23	1:A:216:LYS:HA	1.80	0.64
1:A:511:THR:HA	1:A:622:THR:HG22	1.80	0.64
1:B:297:ALA:HA	1:B:306:PRO:HA	1.80	0.63
1:A:962:MET:HG2	1:A:977:PHE:CE1	2.30	0.63
1:A:403:VAL:HG11	1:A:553:ARG:HH12	1.63	0.63
1:B:397:CYS:O	1:B:401:ARG:HG2	1.99	0.63
1:B:352:ARG:HE	1:B:400:GLU:HG3	1.62	0.62
1:B:235:HIS:HB2	1:B:409:LEU:HD13	1.81	0.62
1:B:879:GLN:NE2	1:B:926:VAL:HG11	2.13	0.62
1:B:47:TRP:HB3	1:B:200:LEU:HB2	1.82	0.62
1:A:109:ILE:HG12	1:A:118:VAL:HG22	1.81	0.62
1:B:270:TRP:O	1:B:274:GLY:HA3	1.99	0.62
1:B:319:LEU:HA	1:B:322:HIS:CD2	2.34	0.62
1:B:624:ASN:O	1:B:637:SER:HA	2.00	0.62
1:B:744:ALA:HB1	1:B:947:GLU:HG3	1.82	0.61
1:A:264:SER:O	1:A:268:VAL:HG23	1.99	0.61
1:B:384:PRO:HA	1:B:387:ILE:HD13	1.82	0.61
1:A:320:TRP:CZ3	1:A:329:TRP:O	2.42	0.61
1:A:277:THR:HG22	1:A:381:GLY:HA3	1.81	0.61

	a second	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:74:CYS:SG	1:B:139:ARG:HB2	2.41	0.61
1:B:159:GLN:HE21	1:B:162:ASP:HB3	1.66	0.61
1:A:352:ARG:HE	1:A:400:GLU:HG3	1.66	0.60
1:A:749:PRO:HA	1:A:851:TYR:HA	1.81	0.60
1:B:533:SER:HB3	1:B:555:ILE:HD11	1.82	0.60
7:B:1204:BXY:H2	4:G:2:GLC:H61	1.83	0.59
1:B:511:THR:HA	1:B:622:THR:HG22	1.83	0.59
1:B:626:TRP:H	1:B:631:ASN:ND2	2.01	0.59
1:B:70:VAL:HB	1:B:143:PHE:HB3	1.83	0.59
1:A:594:VAL:HG21	1:A:608:PHE:CD2	2.38	0.59
1:B:543:ILE:CD1	1:B:592:VAL:HG12	2.20	0.59
1:B:319:LEU:HA	1:B:322:HIS:HD2	1.67	0.59
1:B:865:VAL:HG12	1:B:943:PRO:HA	1.84	0.59
1:B:642:GLU:HA	1:B:646:GLY:HA2	1.84	0.58
7:B:1204:BXY:H2	4:G:2:GLC:C6	2.33	0.58
1:A:862:LEU:O	1:A:946:PRO:HD2	2.03	0.58
1:B:530:LEU:O	1:B:534:ILE:HG12	2.04	0.58
1:A:446:VAL:O	1:A:450:VAL:HB	2.04	0.58
1:A:897:PHE:HB3	1:A:909:LEU:HD12	1.85	0.58
1:B:496:LEU:HD23	1:B:500:ASP:HB3	1.83	0.58
1:B:398:SER:HB3	1:B:414:ALA:HB2	1.85	0.58
1:B:301:ARG:HH22	1:B:493:GLY:HA2	1.68	0.57
1:B:303:PHE:H	1:B:1010:GLY:HA3	1.68	0.57
1:B:686:VAL:O	1:B:688:PRO:HD3	2.05	0.57
1:B:937:TRP:N	1:B:937:TRP:CD1	2.73	0.57
1:A:930:ASP:OD1	1:A:930:ASP:N	2.36	0.57
1:A:965:TRP:CZ2	1:A:1001:ASN:HB3	2.40	0.57
1:A:626:TRP:CD1	1:A:626:TRP:N	2.73	0.57
1:B:993:PRO:HD2	1:B:998:ALA:HB2	1.85	0.57
1:B:870:ARG:HB2	1:B:936:HIS:HA	1.86	0.57
1:A:429:ILE:HD12	1:A:564:ALA:O	2.05	0.57
1:B:231:LEU:HD21	1:B:465:ALA:HB2	1.88	0.56
1:B:246:LYS:HB3	1:B:249:LEU:CB	2.36	0.56
1:A:407:ARG:HH21	1:A:409:LEU:H	1.54	0.56
1:B:870:ARG:HD2	1:B:935:GLN:O	2.05	0.56
1:A:429:ILE:O	1:A:432:VAL:HB	2.07	0.55
1:A:510:THR:O	1:A:515:GLY:HA3	2.06	0.55
1:A:870:ARG:HG3	1:A:904:PRO:HB3	1.88	0.55
1:B:115:ASP:HA	1:B:129:PRO:HA	1.88	0.55
1:A:412:ALA:HB2	1:A:462:ILE:HG22	1.88	0.55
1:A:835:SER:OG	1:A:929:ASP:OD2	2.24	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
2:C:8:ILE:HG23	2:C:77:ILE:HD11	1.88	0.55
1:B:39:GLU:HB3	1:B:1061:THR:HG22	1.88	0.55
1:B:711:GLN:NE2	1:B:715:TRP:O	2.39	0.55
1:B:879:GLN:NE2	1:B:926:VAL:CG1	2.69	0.55
1:A:273:VAL:HG21	1:A:705:THR:HA	1.89	0.55
1:A:59:PRO:HA	1:A:184:VAL:HA	1.89	0.54
1:A:712:TYR:HB2	1:A:713:PRO:CD	2.33	0.54
7:B:1204:BXY:O2	4:G:2:GLC:C4	2.56	0.54
1:A:302:TRP:HD1	1:A:492:VAL:CG1	2.20	0.54
1:A:530:LEU:O	1:A:534:ILE:HG12	2.07	0.54
1:B:556:GLY:O	1:B:560:ILE:HG12	2.08	0.54
1:A:42:THR:HA	1:A:206:THR:HG21	1.89	0.54
1:A:533:SER:HB3	1:A:555:ILE:HD11	1.89	0.54
1:A:623:VAL:HG23	1:A:625:GLY:H	1.73	0.54
1:B:302:TRP:HE1	1:B:493:GLY:CA	2.21	0.54
1:A:145:ALA:HA	1:A:150:VAL:HG23	1.90	0.53
1:A:572:TRP:HB2	1:A:575:HIS:HD2	1.71	0.53
2:C:32:SER:HA	2:C:69:THR:HA	1.90	0.53
1:B:965:TRP:CZ2	1:B:1001:ASN:HB3	2.44	0.53
1:B:257:THR:HG21	1:B:361:ARG:NH2	2.24	0.53
1:B:932:LEU:H	1:B:932:LEU:CD1	2.11	0.53
1:B:769:ASN:HD21	1:B:818:ARG:H	1.56	0.53
1:A:262:LEU:O	1:A:266:MET:HG2	2.09	0.53
1:B:738:VAL:CG1	1:B:1027:THR:HG22	2.36	0.53
1:B:608:PHE:O	1:B:612:VAL:HG23	2.09	0.53
2:C:13:ALA:HA	2:C:27:VAL:HG21	1.91	0.53
1:A:403:VAL:HA	1:A:445:ILE:HD11	1.91	0.53
1:B:320:TRP:HD1	1:B:330:MET:HE2	1.74	0.53
1:B:625:GLY:HA2	1:B:631:ASN:HD21	1.73	0.53
1:A:624:ASN:ND2	1:A:635:PRO:O	2.32	0.52
1:B:965:TRP:HZ2	1:B:1001:ASN:HB3	1.74	0.52
1:A:741:ASN:HB3	1:A:744:ALA:HB2	1.92	0.52
1:A:524:LEU:HD21	1:A:618:LEU:HD23	1.91	0.52
1:A:697:VAL:O	1:A:701:VAL:HG23	2.08	0.52
1:B:834:GLY:HA2	1:B:939:ALA:HA	1.91	0.52
1:B:356:ALA:O	1:B:360:SER:HB2	2.10	0.52
1:A:406:SER:HB2	2:C:49:VAL:HG21	1.92	0.52
1:A:284:LEU:HD22	1:A:969:LEU:HD12	1.91	0.52
1:A:517:VAL:HG22	1:A:619:SER:O	2.10	0.52
1:B:273:VAL:HG21	1:B:705:THR:HA	1.91	0.52
1:B:862:LEU:HB2	1:B:912:PRO:HA	1.91	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:90:VAL:HG12	1:A:110:GLU:HB3	1.92	0.51
1:A:841:GLN:CB	1:A:932:LEU:O	2.57	0.51
1:A:860:GLY:HA2	1:A:948:LEU:HD12	1.92	0.51
1:B:263:VAL:HG11	1:B:342:TRP:CD1	2.45	0.51
1:A:62:GLY:HA2	1:A:303:PHE:HB3	1.93	0.51
1:B:917:PRO:HB2	1:B:919:GLU:HG2	1.93	0.51
1:A:349:VAL:HG11	1:A:585:CYS:SG	2.50	0.51
1:B:388:ILE:HG23	1:B:421:THR:HB	1.93	0.51
1:A:879:GLN:HG2	1:A:894:SER:HB3	1.93	0.51
1:B:36:LEU:HD23	1:B:216:LYS:HA	1.93	0.51
1:B:543:ILE:HD12	1:B:543:ILE:C	2.31	0.50
1:B:1005:MET:HB3	1:B:1012:PRO:HD2	1.94	0.50
1:A:965:TRP:HZ2	1:A:1001:ASN:HB3	1.76	0.50
1:B:388:ILE:HB	1:B:578:VAL:HG23	1.94	0.50
1:A:955:VAL:HG12	1:A:989:TRP:CD2	2.47	0.50
1:A:1062:ARG:HD3	1:A:1066:TRP:CH2	2.47	0.50
1:A:735:ASP:HB3	1:A:1030:LYS:HB2	1.94	0.50
1:A:878:VAL:HG23	1:A:895:ILE:HG23	1.93	0.50
1:A:850:TRP:HB3	1:A:922:GLN:HB3	1.94	0.49
2:C:44:MET:HB3	2:C:64:LEU:HD22	1.94	0.49
2:C:8:ILE:HG21	2:C:74:VAL:HA	1.93	0.49
1:B:606:THR:HB	1:B:662:ALA:HB2	1.93	0.49
1:A:308:SER:CB	1:A:309:PRO:HD3	2.43	0.49
1:A:599:MET:O	1:A:605:ARG:HD2	2.13	0.49
1:B:736:VAL:HG23	1:B:951:LEU:HB2	1.92	0.49
1:A:418:GLY:HA3	1:A:435:LEU:HD21	1.94	0.49
1:A:904:PRO:HG3	1:A:935:GLN:HE22	1.77	0.49
1:B:877:GLU:HG2	1:B:896:THR:HG22	1.94	0.49
1:A:302:TRP:NE1	1:A:493:GLY:HA3	2.24	0.49
1:A:389:ALA:HB1	1:A:580:ALA:HB3	1.95	0.49
1:B:636:TRP:H	4:L:2:GLC:C3	2.25	0.49
1:B:73:PRO:HG2	1:B:76:ALA:HB2	1.94	0.49
1:A:908:ASN:HD21	1:A:1026:PRO:HB3	1.78	0.49
1:B:125:VAL:HG13	1:B:126:VAL:HG23	1.94	0.49
1:B:657:LEU:HA	1:B:660:LEU:HD12	1.93	0.49
1:B:68:LEU:HD13	1:B:202:ALA:HB2	1.95	0.49
1:A:407:ARG:HH21	1:A:409:LEU:CB	2.26	0.48
1:A:642:GLU:CB	1:A:646:GLY:HA2	2.43	0.48
1:A:841:GLN:CB	1:A:932:LEU:HA	2.43	0.48
1:B:864:VAL:HG22	1:B:946:PRO:HD3	1.94	0.48
1:A:102:ALA:C	1:A:104:ASP:H	2.15	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:396:TRP:HD1	1:A:557:ILE:HD12	1.78	0.48
1:B:537:THR:HG23	1:B:542:ARG:HA	1.95	0.48
1:A:273:VAL:CG2	1:A:705:THR:HA	2.43	0.48
1:A:429:ILE:HD11	1:A:568:THR:HG23	1.96	0.48
1:B:605:ARG:HH12	1:B:672:VAL:HG11	1.77	0.48
4:L:1:BGC:O6	4:L:2:GLC:H5	2.14	0.48
1:B:159:GLN:HB2	1:B:170:VAL:HG22	1.96	0.48
7:B:1204:BXY:O2	4:G:2:GLC:C5	2.61	0.48
1:B:961:VAL:HG22	1:B:963:LEU:HG	1.96	0.48
1:A:177:TYR:HB3	1:A:179:PHE:CE2	2.49	0.48
1:A:302:TRP:HE1	1:A:493:GLY:CA	2.26	0.48
1:B:743:ASN:HD21	1:B:826:ASN:H	1.60	0.48
1:B:847:ARG:HG3	1:B:926:VAL:HG12	1.93	0.48
1:A:392:ILE:HD13	1:A:582:LEU:HG	1.95	0.47
1:B:49:GLN:HB3	1:B:1054:ARG:HG3	1.96	0.47
1:B:983:VAL:HG21	1:B:1055:LEU:HD11	1.96	0.47
1:B:38:VAL:HG23	1:B:216:LYS:HD3	1.95	0.47
1:A:1008:LEU:HD21	1:A:1075:HIS:HD2	1.78	0.47
1:A:642:GLU:HB2	1:A:646:GLY:HA2	1.97	0.47
1:A:34:PRO:HB2	1:A:479:LEU:HB2	1.95	0.47
1:A:414:ALA:HA	1:A:417:ILE:HD12	1.96	0.47
1:A:45:LEU:HB2	1:A:204:ILE:HD11	1.97	0.47
1:B:548:LEU:HD11	1:B:552:ARG:HH21	1.79	0.47
1:B:366:THR:CG2	1:B:690:ALA:HB2	2.44	0.47
1:B:647:PHE:CD1	1:B:647:PHE:N	2.81	0.47
1:A:407:ARG:NH2	1:A:409:LEU:H	2.12	0.47
1:B:257:THR:H	1:B:260:ASP:HB2	1.79	0.47
1:A:864:VAL:HG22	1:A:946:PRO:HD3	1.97	0.47
1:B:151:THR:HG22	1:B:173:GLU:HG2	1.96	0.47
1:B:867:ALA:HB2	1:B:940:LEU:HD23	1.97	0.47
2:C:5:GLN:HG3	2:C:74:VAL:HG11	1.97	0.47
1:A:858:GLN:HG3	1:A:860:GLY:H	1.78	0.47
1:A:297:ALA:HA	1:A:306:PRO:HA	1.97	0.47
1:A:378:LEU:HD21	1:A:519:ARG:HG2	1.97	0.47
1:B:59:PRO:HA	1:B:184:VAL:HA	1.96	0.47
1:B:622:THR:O	1:B:640:PHE:HA	2.15	0.47
1:B:412:ALA:HA	1:B:415:ILE:HD12	1.97	0.46
1:A:263:VAL:HG11	1:A:342:TRP:CG	2.51	0.46
1:A:407:ARG:HH21	1:A:409:LEU:HB2	1.80	0.46
1:A:873:GLN:HE22	1:A:898:GLY:HA2	1.79	0.46
1:B:45:LEU:HB3	1:B:202:ALA:HB3	1.98	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:631:ASN:ND2	1:B:637:SER:HB2	2.30	0.46
1:B:280:ASP:HB3	1:B:382:LEU:H	1.80	0.46
1:A:120:VAL:HG21	1:A:143:PHE:CZ	2.50	0.46
1:A:149:LYS:HB3	1:A:175:SER:HB3	1.98	0.46
1:A:320:TRP:CH2	1:A:332:PHE:HB3	2.50	0.46
1:B:86:ARG:HD2	1:B:88:ARG:NH1	2.31	0.46
1:A:346:SER:HA	1:A:350:ILE:HD12	1.96	0.46
1:A:512:SER:HB2	1:A:513:PRO:HD2	1.96	0.46
1:A:603:ARG:HD2	1:A:666:HIS:HB2	1.97	0.46
1:B:83:PRO:HB3	1:B:86:ARG:HE	1.81	0.46
1:B:862:LEU:CD1	1:B:910:ARG:HB2	2.45	0.46
1:A:270:TRP:HE3	1:A:701:VAL:HG13	1.80	0.46
1:B:366:THR:HG22	1:B:690:ALA:N	2.31	0.46
1:B:933:ALA:HA	1:B:934:PRO:HD3	1.78	0.46
1:A:712:TYR:CB	1:A:713:PRO:HD3	2.38	0.45
1:B:63:TYR:HB3	1:B:182:GLN:HG3	1.98	0.45
1:B:862:LEU:HD11	1:B:910:ARG:HB2	1.97	0.45
1:A:267:LEU:HD22	1:A:372:LEU:HD21	1.97	0.45
1:A:623:VAL:HG23	1:A:623:VAL:O	2.16	0.45
1:B:284:LEU:HD11	1:B:325:THR:HG23	1.98	0.45
1:B:416:ILE:HG12	1:B:468:VAL:HG11	1.98	0.45
1:B:158:THR:HG22	1:B:169:ALA:H	1.81	0.45
2:D:4:THR:HG23	2:D:7:GLU:H	1.81	0.45
1:A:131:GLU:HG2	1:A:132:GLN:H	1.80	0.45
1:A:434:ALA:HA	1:A:557:ILE:HG12	1.98	0.45
1:A:831:PRO:HD2	1:A:942:PRO:HG3	1.98	0.45
1:B:572:TRP:H	1:B:575:HIS:CD2	2.35	0.45
1:B:572:TRP:H	1:B:575:HIS:HD2	1.63	0.45
1:B:702:VAL:O	1:B:706:LEU:HB2	2.16	0.45
1:B:960:PRO:HB3	1:B:985:GLU:OE1	2.17	0.45
2:D:60:PRO:HD2	2:D:63:ASP:HB2	1.99	0.45
1:A:184:VAL:HB	1:A:1019:LEU:HD13	1.98	0.45
1:B:513:PRO:HD2	1:B:627:TRP:CZ2	2.51	0.45
1:B:311:GLY:HA3	1:B:314:TYR:HD2	1.82	0.45
1:B:626:TRP:CD1	1:B:634:VAL:HG21	2.52	0.45
1:B:249:LEU:HG	1:B:401:ARG:HE	1.82	0.44
1:B:282:TYR:CD2	1:B:965:TRP:HB2	2.52	0.44
1:B:352:ARG:NE	1:B:400:GLU:HG3	2.32	0.44
1:B:861:PRO:HD2	1:B:948:LEU:HD12	1.99	0.44
1:A:622:THR:HB	1:A:623:VAL:H	1.39	$0.\overline{44}$
1:B:320:TRP:HD1	1:B:330:MET:CE	$2.\overline{30}$	$0.\overline{44}$

	, page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:88:ARG:HG2	1:B:189:ASP:O	2.17	0.44
1:B:846:LEU:O	1:B:926:VAL:HA	2.18	0.44
2:C:9:ILE:HD11	2:C:29:PRO:HG3	1.99	0.44
1:A:95:VAL:HG11	1:A:102:ALA:HA	1.99	0.44
1:A:320:TRP:HH2	1:A:332:PHE:HB3	1.82	0.44
1:A:336:LEU:HA	1:A:339:LEU:HD12	1.99	0.44
1:A:397:CYS:O	1:A:401:ARG:HG3	2.17	0.44
1:A:951:LEU:O	1:A:955:VAL:HG22	2.16	0.44
1:A:252:ARG:HD2	1:A:347:ARG:HB3	1.98	0.44
1:A:386:PRO:HG2	1:A:387:ILE:HD12	1.99	0.44
1:A:841:GLN:HB2	1:A:932:LEU:HA	1.99	0.44
1:B:311:GLY:CA	1:B:314:TYR:HD2	2.31	0.44
1:B:936:HIS:CG	1:B:936:HIS:O	2.70	0.44
1:A:908:ASN:ND2	1:A:1026:PRO:HB3	2.32	0.44
1:B:741:ASN:HB3	1:B:744:ALA:HB2	2.00	0.44
1:A:316:LEU:HA	1:A:319:LEU:HD12	2.00	0.44
1:A:845:VAL:HG12	1:A:928:SER:HA	2.00	0.44
1:B:910:ARG:HD2	1:B:1034:TYR:H	1.83	0.44
2:D:23:GLU:HG3	2:D:24:PRO:HD2	2.00	0.44
1:B:1020:LEU:HD22	1:B:1043:LEU:HB3	1.99	0.44
1:B:536:MET:HG3	1:B:543:ILE:HA	1.99	0.44
1:A:136:PRO:HB2	1:A:139:ARG:CZ	2.48	0.44
1:B:136:PRO:HG2	1:B:139:ARG:HD3	2.00	0.44
1:B:249:LEU:HA	1:B:401:ARG:HE	1.83	0.44
7:B:1204:BXY:C3	4:G:2:GLC:H5	2.43	0.43
1:A:634:VAL:HG22	1:A:637:SER:HB3	2.00	0.43
1:B:349:VAL:HG11	1:B:585:CYS:SG	2.58	0.43
1:A:356:ALA:HB2	1:A:545:GLY:HA3	2.00	0.43
1:A:534:ILE:CD1	1:A:559:ILE:HD11	2.47	0.43
1:B:737:LEU:HB3	1:B:948:LEU:HB3	2.00	0.43
1:A:88:ARG:HD3	1:A:190:LEU:HA	2.00	0.43
1:B:388:ILE:HD13	1:B:428:GLY:HA2	2.00	0.43
1:A:738:VAL:HG22	1:A:954:VAL:HG21	2.00	0.43
1:B:301:ARG:HG3	1:B:1009:GLY:O	2.18	0.43
1:A:139:ARG:HG2	1:A:157:LEU:HB2	2.00	0.43
1:A:159:GLN:HB2	1:A:170:VAL:HG22	2.00	0.43
1:B:626:TRP:O	1:B:631:ASN:HB2	2.18	0.43
2:C:46:GLU:HA	2:C:49:VAL:HG12	2.01	0.43
1:A:366:THR:HG21	1:A:591:ALA:HB2	2.01	0.43
1:A:841:GLN:HB2	1:A:932:LEU:CA	2.49	0.43
1:A:320:TRP:CZ3	1:A:333:PRO:HD3	2.54	0.43

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:396:TRP:CD1	1:A:557:ILE:HD12	2.54	0.43	
1:A:653:GLY:O	1:A:656:VAL:HG12	2.19	0.43	
1:B:474:PHE:HE2	1:B:479:LEU:HA	1.83	0.43	
1:B:99:ALA:HB3	1:B:102:ALA:HB2	2.00	0.43	
2:D:32:SER:H	2:D:36:ASP:HB2	1.84	0.43	
1:A:931:ASP:HB3	1:A:936:HIS:HB3	2.00	0.42	
1:A:974:GLN:NE2	1:A:974:GLN:H	2.06	0.42	
1:A:441:PRO:O	1:A:445:ILE:HG12	2.19	0.42	
1:A:524:LEU:HB3	1:A:615:VAL:HB	2.01	0.42	
1:A:602:ARG:HA	1:A:602:ARG:HD2	1.78	0.42	
1:B:1002:SER:N	1:B:1003:PRO:CD	2.82	0.42	
1:A:284:LEU:HD11	1:A:325:THR:HG23	2.00	0.42	
1:B:879:GLN:HE21	1:B:926:VAL:HG13	1.84	0.42	
1:B:776:SER:OG	1:B:937:TRP:HH2	2.02	0.42	
1:A:967:VAL:HG23	1:A:967:VAL:O	2.19	0.42	
1:B:34:PRO:HB3	1:B:474:PHE:CD2	2.54	0.42	
1:B:671:ASP:HB3	1:B:674:PRO:HD2	2.00	0.42	
1:B:848:SER:HB3	1:B:925:LEU:HB3	2.01	0.42	
1:A:58:ALA:HB3	1:A:185:GLY:HA2	2.02	0.42	
1:A:1029:LEU:HB3	1:A:1032:ASP:O	2.20	0.42	
1:A:33:THR:HA	1:A:36:LEU:HD22	2.02	0.42	
1:A:549:GLY:HA3	1:A:553:ARG:HH21	1.85	0.42	
1:B:147:ALA:HA	1:B:180:ARG:HH21	1.85	0.42	
1:B:770:GLY:O	1:B:836:TRP:HE3	2.02	0.42	
1:A:459:LEU:O	1:A:462:ILE:HG13	2.20	0.42	
1:B:311:GLY:CA	1:B:314:TYR:CD2	3.03	0.42	
1:B:771:ILE:HG21	1:B:939:ALA:HB2	2.01	0.42	
1:B:98:GLN:HG3	1:B:1046:TRP:CE3	2.55	0.42	
2:C:63:ASP:O	2:C:67:LEU:HG	2.19	0.42	
1:A:308:SER:HB2	1:A:309:PRO:HD3	2.02	0.42	
1:B:53:TRP:CZ3	1:B:190:LEU:HD13	2.54	0.42	
1:A:961:VAL:HG12	1:A:989:TRP:HB2	2.01	0.41	
1:B:94:THR:CG2	1:B:107:LEU:H	2.24	0.41	
1:B:48:PRO:HG3	1:B:199:GLN:HA	2.01	0.41	
1:B:459:LEU:O	1:B:462:ILE:HG13	2.20	0.41	
1:B:880:TRP:HZ3	1:B:895:ILE:HG23	1.85	0.41	
2:C:67:LEU:HB3	2:C:73:VAL:HG22	2.02	0.41	
1:A:422:LEU:HD11	1:A:432:VAL:HG23	2.02	0.41	
1:B:300:TYR:HE1	1:B:963:LEU:O	2.04	0.41	
2:C:32:SER:H	2:C:36:ASP:HB2	1.85	0.41	
1:B:346:SER:HA	1:B:350:ILE:HD12	2.02	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:602:ARG:CZ	1:B:676:ARG:HH11	2.33	0.41
1:B:769:ASN:ND2	1:B:818:ARG:H	2.19	0.41
1:A:60:LEU:HD22	1:A:204:ILE:HG23	2.01	0.41
1:A:871:PHE:HB2	1:A:875:GLU:HG3	2.02	0.41
1:B:308:SER:CB	1:B:309:PRO:HD3	2.49	0.41
1:B:320:TRP:CD1	1:B:330:MET:HE2	2.54	0.41
1:B:71:THR:HA	1:B:141:LEU:O	2.20	0.41
1:A:132:GLN:HB3	1:A:157:LEU:HD11	2.02	0.41
1:A:738:VAL:HG12	1:A:1027:THR:HG22	2.01	0.41
1:B:68:LEU:HB3	1:B:145:ALA:HB3	2.02	0.41
1:B:341:CYS:HA	1:B:390:LEU:HD13	2.02	0.41
1:B:344:VAL:O	1:B:349:VAL:HG23	2.20	0.41
1:B:366:THR:HG23	1:B:690:ALA:HB2	2.02	0.41
1:B:936:HIS:ND1	1:B:936:HIS:C	2.72	0.41
1:A:319:LEU:HA	1:A:322:HIS:CD2	2.55	0.41
1:A:356:ALA:CB	1:A:545:GLY:HA3	2.51	0.41
1:A:738:VAL:HG21	1:A:954:VAL:HG11	2.03	0.41
1:B:409:LEU:O	1:B:413:VAL:HG23	2.21	0.41
1:B:594:VAL:HG21	1:B:608:PHE:CD2	2.55	0.41
1:B:636:TRP:CD2	1:B:641:PRO:HA	2.55	0.41
1:A:488:PHE:O	1:A:492:VAL:HG12	2.21	0.41
1:A:622:THR:O	1:A:640:PHE:HA	2.20	0.41
1:A:961:VAL:HG22	1:A:975:ARG:O	2.21	0.41
1:B:594:VAL:O	1:B:594:VAL:HG22	2.21	0.41
1:B:935:GLN:CA	1:B:935:GLN:OE1	2.69	0.41
1:B:989:TRP:HZ3	1:B:1025:VAL:HG21	1.85	0.41
1:A:679:ARG:HD2	1:A:681:TRP:HE1	1.86	0.41
1:A:867:ALA:HB3	1:A:909:LEU:HD23	2.03	0.41
1:A:543:ILE:O	1:A:546:THR:HB	2.21	0.41
1:A:542:ARG:HG3	1:A:546:THR:HG22	2.03	0.41
1:A:723:ASN:HB3	1:A:728:LYS:HE3	2.03	0.41
1:B:378:LEU:HD22	1:B:574:HIS:HA	2.02	0.41
1:B:275:ALA:H	1:B:704:LEU:HD22	1.86	0.41
1:A:623:VAL:O	1:A:623:VAL:CG2	2.69	0.41
1:B:411:VAL:HG11	1:B:442:LEU:HB2	2.01	0.41
1:B:743:ASN:HD21	1:B:826:ASN:N	2.19	0.41
1:B:647:PHE:HD1	1:B:647:PHE:N	2.19	0.40
1:B:946:PRO:HB2	1:B:948:LEU:HG	2.03	0.40
1:A:275:ALA:H	1:A:704:LEU:HD13	1.86	0.40
1:A:388:ILE:HD13	1:A:428:GLY:HA2	2.03	0.40
1:B:301:ARG:HH21	1:B:493:GLY:HA2	1.80	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:696:LEU:HA	1:B:696:LEU:HD13	1.97	0.40
1:A:263:VAL:HG11	1:A:342:TRP:CD1	2.56	0.40
1:A:835:SER:HB3	1:A:938:ILE:H	1.86	0.40
1:B:71:THR:O	1:B:198:LEU:HA	2.20	0.40
1:A:526:LEU:HD13	1:A:583:ALA:HA	2.03	0.40
1:B:216:LYS:HG2	1:B:220:MET:HE2	2.04	0.40
1:B:90:VAL:HG22	1:B:110:GLU:HB3	2.03	0.40
1:A:303:PHE:HE1	1:A:492:VAL:HG21	1.87	0.40
1:A:756:GLN:HG3	1:A:815:ASN:ND2	2.36	0.40
1:B:75:GLN:HA	1:B:134:LEU:HD12	2.03	0.40
1:B:605:ARG:HH12	1:B:672:VAL:CG2	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	centiles
1	А	1031/1113~(93%)	915~(89%)	96 (9%)	20 (2%)	8	34
1	В	1031/1113~(93%)	934 (91%)	77 (8%)	20 (2%)	8	34
2	С	82/99~(83%)	72~(88%)	7 (8%)	3~(4%)	3	20
2	D	82/99~(83%)	70~(85%)	10 (12%)	2 (2%)	6	28
All	All	2226/2424 (92%)	1991 (89%)	190 (8%)	45 (2%)	7	32

All (45) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	63	TYR
1	А	243	ARG
1	А	308	SER
1	А	451	SER

Moi Chain Res Type 1 A 628 TYR 1 B 544 PRO 1 B 712 TYR 1 B 1030 LYS 1 B 1030 LYS 2 C 60 PRO 2 C 61 ASP 1 A 678 GLN 1 A 980 ARG 1 A 980 ARG 1 A 980 ARG 1 B 242 GLY 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 966 THR 1 A 492 VAL 1 A <td< th=""><th>2 2 2</th><th></th><th></th><th></th></td<>	2 2 2			
1 A 628 TYR 1 B 544 PRO 1 B 712 TYR 1 B 1030 LYS 2 C 60 PRO 2 C 61 ASP 1 A 678 GLN 1 A 712 TYR 1 A 678 GLN 1 A 980 ARG 1 B 242 GLY 1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 492 VAL 1 A 548 LEU 1 A 546 THR	Mol	Chain	Res	Type
1 A 1030 LYS 1 B 544 PRO 1 B 1030 LYS 2 C 60 PRO 2 C 61 ASP 1 A 678 GLN 1 A 712 TYR 1 A 678 GLN 1 A 980 ARG 1 B 242 GLY 1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 548 LEU 1 A 548 LEU 1 A 546 THR	1	A	628	TYR
1 B 544 PRO 1 B 1030 LYS 2 C 60 PRO 2 C 61 ASP 1 A 678 GLN 1 A 712 TYR 1 A 712 TYR 1 A 980 ARG 1 B 242 GLY 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 548 LEU 1 A 546 LYS 1 B 308 <td>1</td> <td>А</td> <td>1030</td> <td>LYS</td>	1	А	1030	LYS
1 B 712 TYR 1 B 1030 LYS 2 C 60 PRO 2 C 61 ASP 1 A 678 GLN 1 A 980 ARG 1 A 980 ARG 1 B 242 GLY 1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 1068 PRO 1 A 1068 PRO 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 548 LEU 1 A 546 LYS 1 B 308 <td>1</td> <td>В</td> <td>544</td> <td>PRO</td>	1	В	544	PRO
1 B 1030 LYS 2 C 60 PRO 2 C 61 ASP 1 A 678 GLN 1 A 980 ARG 1 B 242 GLY 1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 A 1068 PRO 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 548 LEU 1 A 548 LEU 1 A 546 LYS 1 B 308 </td <td>1</td> <td>В</td> <td>712</td> <td>TYR</td>	1	В	712	TYR
2 C 60 PRO 2 C 61 ASP 1 A 678 GLN 1 A 712 TYR 1 A 980 ARG 1 B 242 GLY 1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 548 LEU 1 A 548 LEU 1 B 308 SER 1 B 914	1	В	1030	LYS
2 C 61 ASP 1 A 678 GLN 1 A 712 TYR 1 A 980 ARG 1 B 242 GLY 1 B 754 ALA 2 C 62 GLU 1 A 856 ARG 1 A 856 ARG 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 492 VAL 1 A 548 LEU 1 A 548 LEU 1 A 548 LEU 1 B 165 ASP 1 B 308 SER 1 B 914 <td>2</td> <td>С</td> <td>60</td> <td>PRO</td>	2	С	60	PRO
1 A 678 GLN 1 A 712 TYR 1 A 980 ARG 1 B 242 GLY 1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 968 GLY 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 492 VAL 1 A 548 LEU 1 A 546 LYS 1 B 308 SER 1 B 914 SER <td>2</td> <td>С</td> <td>61</td> <td>ASP</td>	2	С	61	ASP
1 A 712 TYR 1 A 980 ARG 1 B 242 GLY 1 B 754 ALA 2 C 62 GLU 1 A 856 ARG 1 A 968 GLY 1 A 1068 PRO 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 548 LEU 1 A 548 LEU 1 A 752 GLU 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 <	1	А	678	GLN
1 A 980 ARG 1 B 242 GLY 1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 856 ARG 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 B 725 GLY 2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 548 LEU 1 A 548 LEU 1 B 308 SER 1 B 914 SER 1 B 914 SER 1 B 309 PRO 1 <	1	А	712	TYR
1 B 242 GLY 1 B 754 ALA 2 C 62 GLU 1 A 856 ARG 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 968 GLY 1 A 1068 PRO 1 B 728 LYS 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 548 LEU 1 A 548 LEU 1 A 546 LYS 1 B 165 ASP 1 B 308 SER 1 B 914 SER 1 B 990 ARG 1 A 596 THR 1 B 677 PRO	1	А	980	ARG
1 B 492 VAL 1 B 754 ALA 2 C 62 GLU 1 A 856 ARG 1 A 968 GLY 1 A 1068 PRO 1 B 728 LYS 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 66 THR 1 A 548 LEU 1 A 548 LEU 1 A 548 LEU 1 B 165 ASP 1 B 246 LYS 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 B 677	1	В	242	GLY
1 B 754 ALA 2 C 62 GLU 1 A 856 ARG 1 A 968 GLY 1 A 1068 PRO 1 B 728 LYS 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 548 LEU 1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 B 309 PRO 1 B 170 <td>1</td> <td>В</td> <td>492</td> <td>VAL</td>	1	В	492	VAL
2 C 62 GLU 1 A 856 ARG 1 A 968 GLY 1 A 1068 PRO 1 B 728 LYS 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 548 LEU 1 A 548 LEU 1 A 548 LEU 1 B 165 ASP 1 B 165 ASP 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 B 309 PRO 1 B 677 <td>1</td> <td>В</td> <td>754</td> <td>ALA</td>	1	В	754	ALA
1 A 856 ARG 1 A 968 GLY 1 A 1068 PRO 1 B 728 LYS 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 548 LEU 1 A 752 GLU 1 B 165 ASP 1 B 165 ASP 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 <t< td=""><td>2</td><td>С</td><td>62</td><td>GLU</td></t<>	2	С	62	GLU
1A968 GLY 1A1068PRO1B728LYS1B755 GLY 2D33PHE1A66THR1A492VAL1A548LEU1A752GLU1B165ASP1B165ASP1B308SER1B914SER1B980ARG1A596THR1A857ASP1B309PRO1B170VAL1B170VAL1B213THR2D85PRO1A1052PRO1B273VAL1B545GLY1B968GLY	1	А	856	ARG
1 A 1068 PRO 1 B 728 LYS 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 548 LEU 1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 <	1	А	968	GLY
1 B 728 LYS 1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 548 LEU 1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 <td< td=""><td>1</td><td>А</td><td>1068</td><td>PRO</td></td<>	1	А	1068	PRO
1 B 755 GLY 2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 752 GLU 1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 <t< td=""><td>1</td><td>В</td><td>728</td><td>LYS</td></t<>	1	В	728	LYS
2 D 33 PHE 1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 752 GLU 1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 B 273	1	В	755	GLY
1 A 66 THR 1 A 492 VAL 1 A 548 LEU 1 A 752 GLU 1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 B 980 ARG 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 B 273 VAL 1 <t< td=""><td>2</td><td>D</td><td>33</td><td>PHE</td></t<>	2	D	33	PHE
1 A 492 VAL 1 A 548 LEU 1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 B 980 ARG 1 B 980 ARG 1 B 980 ARG 1 B 980 PRO 1 B 980 PRO 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1	1	А	66	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	492	VAL
1 A 752 GLU 1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 B 980 ARG 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 </td <td>1</td> <td>А</td> <td>548</td> <td>LEU</td>	1	А	548	LEU
1 B 165 ASP 1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 A 857 ASP 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	А	752	GLU
1 B 246 LYS 1 B 308 SER 1 B 914 SER 1 B 914 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 A 596 THR 1 B 309 PRO 1 B 677 PRO 1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	165	ASP
1 B 308 SER 1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 596 THR 1 A 857 ASP 1 B 309 PRO 1 B 677 PRO 1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	246	LYS
1 B 914 SER 1 B 980 ARG 1 A 596 THR 1 A 857 ASP 1 B 309 PRO 1 B 677 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	308	SER
1 B 980 ARG 1 A 596 THR 1 A 857 ASP 1 B 309 PRO 1 B 677 PRO 1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	914	SER
1 A 596 THR 1 A 857 ASP 1 B 309 PRO 1 B 677 PRO 1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	980	ARG
1 A 857 ASP 1 B 309 PRO 1 B 677 PRO 1 A 544 PRO 1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	А	596	THR
1 B 309 PRO 1 B 677 PRO 1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	А	857	ASP
1 B 677 PRO 1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	309	PRO
1 A 544 PRO 1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	677	PRO
1 B 170 VAL 1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	А	544	PRO
1 B 213 THR 2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	170	VAL
2 D 85 PRO 1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	В	213	THR
1 A 1052 PRO 1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	2	D	85	PRO
1 B 273 VAL 1 B 545 GLY 1 B 968 GLY	1	А	1052	PRO
1 B 545 GLY 1 B 968 GLY	1	В	273	VAL
1 B 968 GLY	1	В	545	GLY
	1	В	968	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	821/880~(93%)	741 (90%)	80 (10%)	8	29
1	В	821/880~(93%)	736~(90%)	85~(10%)	7	25
2	С	73/81~(90%)	$71 \ (97\%)$	2(3%)	44	71
2	D	73/81~(90%)	65~(89%)	8 (11%)	6	24
All	All	1788/1922~(93%)	1613(90%)	175(10%)	8	29

All (175) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	21	ILE
1	А	39	GLU
1	А	47	TRP
1	А	61	ILE
1	А	97	LYS
1	А	115	ASP
1	А	119	ILE
1	А	139	ARG
1	А	150	VAL
1	А	209	SER
1	А	273	VAL
1	А	276	ASN
1	А	280	ASP
1	А	282	TYR
1	А	308	SER
1	А	320	TRP
1	А	328	VAL
1	А	353	LEU
1	A	398	SER
1	А	407	ARG
1	A	432	VAL
1	A	443	LYS
1	A	446	VAL
1	A	458	LEU

Mol	Chain	Res	Type
1	А	486	SER
1	А	506	SER
1	А	511	THR
1	A	536	MET
1	A	542	ARG
1	A	544	PRO
1	A	546	THR
1	А	548	LEU
1	А	562	PHE
1	А	570	THR
1	A	578	VAL
1	А	602	ARG
1	А	612	VAL
1	A	622	THR
1	А	627	TRP
1	А	629	VAL
1	А	639	SER
1	А	642	GLU
1	А	657	LEU
1	А	678	GLN
1	А	680	ARG
1	А	686	VAL
1	А	701	VAL
1	А	712	TYR
1	А	719	ARG
1	А	735	ASP
1	А	736	VAL
1	А	737	LEU
1	А	738	VAL
1	A	746	MET
1	A	758	LEU
1	A	762	THR
1	A	764	LEU
1	A	862	LEU
1	A	876	VAL
1	A	878	VAL
1	A	883	ASP
1	A	909	LEU
1	A	923	ILE
1	A	928	SER
1	A	929	ASP
1	А	930	ASP

Mol	Chain	Res	Type
1	А	932	LEU
1	А	935	GLN
1	А	938	ILE
1	А	945	ILE
1	А	964	ASP
1	А	974	GLN
1	А	984	VAL
1	А	992	LEU
1	А	994	ASP
1	А	1025	VAL
1	А	1039	SER
1	А	1044	THR
1	А	1054	ARG
1	А	1075	HIS
1	В	17	LEU
1	В	33	THR
1	В	36	LEU
1	В	42	THR
1	В	52	VAL
1	В	61	ILE
1	В	75	GLN
1	В	93	SER
1	В	94	THR
1	В	98	GLN
1	В	144	THR
1	В	146	HIS
1	В	198	LEU
1	В	200	LEU
1	В	245	HIS
1	В	249	LEU
1	B	267	LEU
1	В	286	MET
1	B	291	GLU
1	В	301	ARG
1	В	308	SER
1	В	328	VAL
1	В	341	CYS
1	B	$39\overline{4}$	LEU
1	В	398	SER
1	В	399	VAL
1	В	429	ILE
1	В	442	LEU

Mol	Chain	Res	Type
1	В	443	LYS
1	В	456	TRP
1	В	486	SER
1	В	542	ARG
1	В	543	ILE
1	В	544	PRO
1	В	571	LYS
1	В	597	THR
1	В	622	THR
1	В	623	VAL
1	В	642	GLU
1	В	652	LEU
1	В	657	LEU
1	В	668	SER
1	В	676	ARG
1	В	681	TRP
1	В	698	ILE
1	В	704	LEU
1	В	706	LEU
1	В	712	TYR
1	В	716	SER
1	В	728	LYS
1	В	732	LEU
1	В	735	ASP
1	В	763	SER
1	В	817	SER
1	В	821	LEU
1	В	842	GLN
1	В	845	VAL
1	В	848	SER
1	В	856	ARG
1	В	858	GLN
1	В	890	GLU
1	В	895	ILE
1	В	914	SER
1	В	916	ILE
1	В	928	SER
1	В	931	ASP
1	В	932	LEU
1	В	935	GLN
1	В	936	HIS
1	В	937	TRP

	v	1	10
Mol	Chain	\mathbf{Res}	Type
1	В	952	GLN
1	В	962	MET
1	В	990	ARG
1	В	1006	ASP
1	В	1008	LEU
1	В	1019	LEU
1	В	1034	TYR
1	В	1035	ARG
1	В	1039	SER
1	В	1044	THR
1	В	1054	ARG
1	В	1057	LEU
1	В	1062	ARG
1	В	1072	ARG
1	В	1073	LEU
2	С	6	GLU
2	С	77	ILE
2	D	7	GLU
2	D	12	LEU
2	D	16	ILE
2	D	34	VAL
2	D	41	SER
2	D	63	ASP
2	D	72	ASP
2	D	82	GLU

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	11	ASN
1	А	85	ASN
1	А	132	GLN
1	А	159	GLN
1	А	292	HIS
1	А	322	HIS
1	А	710	ASN
1	А	743	ASN
1	А	826	ASN
1	А	841	GLN
1	A	842	GLN
1	A	935	GLN
1	А	974	GLN

Mol	Chain	Res	Type
1	А	1075	HIS
1	В	54	GLN
1	В	113	ASN
1	В	159	GLN
1	В	235	HIS
1	В	322	HIS
1	В	449	HIS
1	В	575	HIS
1	В	631	ASN
1	В	710	ASN
1	В	740	GLN
1	В	743	ASN
1	В	769	ASN
1	В	842	GLN
1	В	858	GLN
1	В	879	GLN
1	В	908	ASN
1	В	979	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

16 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Bos	Link	Bo	ond leng	ths	В	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	BXY	Е	1	3	10, 10, 10	0.76	0	$13,\!14,\!14$	1.06	1 (7%)

Mal	Tune	Chain	Dog	Tink	Bo	ond leng	$_{\rm ths}$	Bond angles		
	туре	Unain	1165		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	BXY	Е	2	3	9, 9, 10	0.49	0	10,12,14	0.88	0
4	BGC	F	1	4	12,12,12	1.58	4 (33%)	17,17,17	2.34	6 (35%)
4	GLC	F	2	4	11,11,12	1.54	2 (18%)	15,15,17	2.49	7 (46%)
4	BGC	G	1	4	12,12,12	1.42	2 (16%)	17,17,17	2.38	8 (47%)
4	GLC	G	2	4	11,11,12	1.73	3 (27%)	15,15,17	2.04	5 (33%)
4	BGC	Н	1	4	12,12,12	1.29	3 (25%)	$17,\!17,\!17$	1.64	4 (23%)
4	GLC	Н	2	4	11, 11, 12	2.24	3 (27%)	$15,\!15,\!17$	<mark>3.26</mark>	6 (40%)
4	BGC	Ι	1	4	12,12,12	1.33	2 (16%)	17,17,17	1.62	2 (11%)
4	GLC	Ι	2	4	11,11,12	2.35	3 (27%)	15,15,17	2.72	6 (40%)
3	BXY	J	1	3	10, 10, 10	0.70	0	13,14,14	1.39	2 (15%)
3	BXY	J	2	3	9,9,10	0.47	0	10,12,14	0.93	1 (10%)
4	BGC	K	1	4	12,12,12	1.51	3 (25%)	17,17,17	1.64	2 (11%)
4	GLC	K	2	4	11,11,12	2.24	3 (27%)	15,15,17	3.04	8 (53%)
4	BGC	L	1	4	12,12,12	1.19	1 (8%)	$17,\!17,\!17$	0.83	0
4	GLC	L	2	4	11,11,12	1.75	2 (18%)	$15,\!15,\!17$	0.90	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	BXY	Е	1	3	-	2/2/18/18	0/1/1/1
3	BXY	Е	2	3	-	0/2/15/18	0/1/1/1
4	BGC	F	1	4	-	2/2/22/22	0/1/1/1
4	GLC	F	2	4	-	0/2/19/22	0/1/1/1
4	BGC	G	1	4	-	1/2/22/22	0/1/1/1
4	GLC	G	2	4	-	0/2/19/22	0/1/1/1
4	BGC	Н	1	4	-	0/2/22/22	0/1/1/1
4	GLC	Н	2	4	-	1/2/19/22	0/1/1/1
4	BGC	Ι	1	4	-	0/2/22/22	0/1/1/1
4	GLC	Ι	2	4	-	2/2/19/22	0/1/1/1
3	BXY	J	1	3	-	2/2/18/18	0/1/1/1
3	BXY	J	2	3	-	2/2/15/18	0/1/1/1
4	BGC	K	1	4	-	2/2/22/22	0/1/1/1
4	GLC	K	2	4	-	0/2/19/22	0/1/1/1
4	BGC	L	1	4	-	2/2/22/22	0/1/1/1
4	GLC	L	2	4	-	1/2/19/22	0/1/1/1

7BVH	
------	--

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	K	2	GLC	C2-C3	-6.07	1.43	1.52
4	Н	2	GLC	O5-C1	5.22	1.52	1.43
4	Ι	2	GLC	O5-C1	4.92	1.51	1.43
4	L	2	GLC	O5-C1	4.58	1.51	1.43
4	Ι	2	GLC	C2-C3	-4.40	1.46	1.52
4	Н	2	GLC	C2-C3	-4.15	1.46	1.52
4	G	2	GLC	O5-C1	3.76	1.49	1.43
4	F	2	GLC	C2-C3	-3.40	1.47	1.52
4	G	2	GLC	C2-C3	-3.36	1.47	1.52
4	Ι	2	GLC	C4-C3	-3.20	1.44	1.52
4	K	2	GLC	C4-C3	-3.06	1.44	1.52
4	L	1	BGC	O5-C1	2.92	1.50	1.42
4	G	1	BGC	O5-C1	2.88	1.50	1.42
4	Ι	1	BGC	O5-C1	2.70	1.49	1.42
4	F	2	GLC	O5-C1	2.57	1.47	1.43
4	G	1	BGC	O5-C5	2.51	1.50	1.44
4	F	1	BGC	C4-C3	-2.50	1.46	1.52
4	F	1	BGC	C1-C2	-2.46	1.46	1.52
4	F	1	BGC	C3-C2	-2.43	1.46	1.52
4	K	1	BGC	O5-C1	2.40	1.48	1.42
4	K	1	BGC	C4-C3	-2.40	1.46	1.52
4	Ι	1	BGC	C4-C3	-2.37	1.46	1.52
4	F	1	BGC	O5-C1	2.26	1.48	1.42
4	G	2	GLC	C4-C3	-2.26	1.46	1.52
4	L	2	GLC	C2-C3	-2.25	1.49	1.52
4	Н	1	BGC	O5-C1	2.22	1.48	1.42
4	Н	1	BGC	C1-C2	-2.13	1.47	1.52
4	Н	2	GLC	C4-C3	-2.10	1.47	1.52
4	Н	1	BGC	C4-C3	-2.10	1.47	1.52
4	Κ	1	BGC	O5-C5	2.06	1.49	1.44
4	K	2	GLC	O5-C1	2.04	1.47	1.43

All (31) bond length outliers are listed below:

All (58) bond angle outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
4	Κ	2	GLC	C3-C4-C5	-8.51	95.06	110.24
4	Ι	2	GLC	C1-O5-C5	7.53	122.40	112.19
4	Н	2	GLC	C2-C3-C4	-7.39	98.10	110.89
4	F	2	GLC	C3-C4-C5	-5.92	99.68	110.24
4	F	1	BGC	O4-C4-C3	-5.60	97.39	110.35
4	G	2	GLC	C1-C2-C3	5.23	116.09	109.67
4	Н	2	GLC	O5-C5-C6	5.03	115.10	107.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Н	2	GLC	C3-C4-C5	-4.98	101.36	110.24
4	Н	2	GLC	O4-C4-C3	4.82	121.49	110.35
4	Ι	1	BGC	C3-C4-C5	-4.69	101.87	110.24
4	G	1	BGC	C4-C3-C2	-4.30	103.31	110.82
4	F	1	BGC	C3-C4-C5	4.09	117.53	110.24
4	G	1	BGC	O5-C5-C4	3.99	116.94	109.69
4	K	1	BGC	C4-C3-C2	-3.82	104.16	110.82
4	F	1	BGC	O3-C3-C4	-3.67	101.86	110.35
4	G	1	BGC	O4-C4-C5	-3.57	100.44	109.30
4	Н	1	BGC	O2-C2-C1	-3.54	100.96	109.16
4	K	1	BGC	C1-C2-C3	-3.46	103.14	110.31
4	F	2	GLC	O3-C3-C2	-3.42	103.45	109.99
4	Ι	2	GLC	C1-C2-C3	3.41	113.86	109.67
4	K	2	GLC	O5-C1-C2	3.40	116.02	110.77
4	F	2	GLC	O4-C4-C3	3.32	118.02	110.35
4	Ι	2	GLC	C6-C5-C4	-3.32	105.24	113.00
4	Н	2	GLC	O2-C2-C1	3.30	115.91	109.15
4	F	2	GLC	C1-C2-C3	3.23	113.64	109.67
4	Κ	2	GLC	C2-C3-C4	-3.19	105.38	110.89
4	Н	2	GLC	C6-C5-C4	-3.07	105.81	113.00
3	J	1	BXY	O4-C4-C5	3.01	115.73	109.21
4	F	1	BGC	O3-C3-C2	-2.99	103.44	110.35
4	G	1	BGC	C1-O5-C5	2.97	119.26	113.66
4	Κ	2	GLC	O2-C2-C3	-2.96	104.21	110.14
4	Н	1	BGC	C1-C2-C3	2.93	116.39	110.31
4	G	1	BGC	C1-C2-C3	-2.89	104.32	110.31
4	Κ	2	GLC	O2-C2-C1	2.79	114.86	109.15
4	F	2	GLC	O2-C2-C1	-2.69	103.65	109.15
4	G	1	BGC	C6-C5-C4	-2.58	106.95	113.00
4	Ι	1	BGC	O5-C1-C2	2.57	114.87	110.28
4	Κ	2	GLC	C1-C2-C3	2.57	112.82	109.67
4	K	2	GLC	O3-C3-C2	-2.51	105.18	109.99
4	G	1	BGC	O4-C4-C3	2.49	116.10	110.35
4	K	2	GLC	O4-C4-C5	2.47	115.43	109.30
4	Н	1	BGC	O4-C4-C3	-2.45	104.69	110.35
4	\mathbf{F}	1	BGC	C4-C3-C2	2.43	115.06	110.82
4	F	2	GLC	O3-C3-C4	2.42	115.95	110.35
3	E	1	BXY	C5-C4-C3	-2.39	109.32	115.09
4	G	2	$GL\overline{C}$	O5-C5-C6	2.37	110.92	107.20
4	Ι	2	$GL\overline{C}$	O2-C2-C1	$2.3\overline{5}$	113.96	109.15
4	Ι	2	GLC	O5-C5-C6	2.35	110.88	107.20
4	H	1	BGC	O5-C5-C4	2.33	113.92	109.69

7BVH

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
4	Ι	2	GLC	O2-C2-C3	-2.31	105.50	110.14
4	G	2	GLC	O3-C3-C2	-2.29	105.60	109.99
3	J	2	BXY	O4-C4-C3	2.29	106.73	104.70
4	G	1	BGC	O3-C3-C4	2.25	115.56	110.35
4	F	2	GLC	O5-C1-C2	-2.23	107.32	110.77
4	F	1	BGC	C1-O5-C5	2.23	117.86	113.66
4	G	2	GLC	O3-C3-C4	-2.11	105.48	110.35
3	J	1	BXY	O4-C1-C2	2.10	107.05	104.46
4	G	2	GLC	O5-C5-C4	-2.00	105.96	110.83

There are no chirality outliers.

		D	T	A 1
Mol	Chain	Res	Type	Atoms
3	Е	1	BXY	O4-C4-C5-O5
3	Е	1	BXY	C3-C4-C5-O5
3	J	2	BXY	O4-C4-C5-O5
4	L	1	BGC	O5-C5-C6-O6
4	F	1	BGC	O5-C5-C6-O6
4	K	1	BGC	O5-C5-C6-O6
4	K	1	BGC	C4-C5-C6-O6
3	J	1	BXY	O4-C4-C5-O5
3	J	2	BXY	C3-C4-C5-O5
4	Ι	2	GLC	C4-C5-C6-O6
4	L	1	BGC	C4-C5-C6-O6
3	J	1	BXY	C3-C4-C5-O5
4	F	1	BGC	C4-C5-C6-O6
4	L	2	GLC	O5-C5-C6-O6
4	G	1	BGC	O5-C5-C6-O6
4	Н	2	GLC	O5-C5-C6-O6
4	Ι	2	GLC	O5-C5-C6-O6

All (17) torsion outliers are listed below:

There are no ring outliers.

9 monomers are involved in 25 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	Ι	1	BGC	1	0
4	F	1	BGC	2	0
4	L	2	GLC	6	0
4	L	1	BGC	2	0
4	Н	1	BGC	1	0

Continued from previous page											
Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes						
4	Н	2	GLC	1	0						
4	G	2	GLC	12	0						
4	F	2	GLC	3	0						
4	Ι	2	GLC	1	0						

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 2 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
6	PO4	А	1202	-	4,4,4	2.47	1 (25%)	6,6,6	0.56	0	
7	BXY	А	1204	-	10, 10, 10	2.84	<mark>5 (50%)</mark>	13,14,14	1.80	3 (23%)	
6	PO4	В	1202	-	4,4,4	2.50	2 (50%)	6,6,6	0.47	0	
7	BXY	В	1204	-	10, 10, 10	<mark>3.62</mark>	7 (70%)	13,14,14	1.48	2(15%)	
7	BXY	В	1203	-	10, 10, 10	<mark>5.04</mark>	7 (70%)	13,14,14	2.30	<mark>5 (38%)</mark>	

Mol T	Tuno	Chain	Bos	Link	Bond lengths			Bond angles		
	Type	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
7	BXY	А	1203	-	10, 10, 10	<mark>6.39</mark>	8 (80%)	$13,\!14,\!14$	<mark>3.46</mark>	8 (61%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	BXY	А	1204	-	-	0/2/18/18	0/1/1/1
7	BXY	В	1204	-	-	2/2/18/18	0/1/1/1
7	BXY	В	1203	-	-	1/2/18/18	0/1/1/1
7	BXY	А	1203	-	-	2/2/18/18	0/1/1/1

All (30) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
7	А	1203	BXY	C1-C2	-12.56	1.38	1.52
7	В	1203	BXY	C1-C2	-12.48	1.38	1.52
7	А	1203	BXY	O4-C1	-8.94	1.32	1.43
7	В	1204	BXY	C1-C2	-7.39	1.44	1.52
7	А	1203	BXY	O2-C2	-6.74	1.27	1.43
7	А	1203	BXY	C3-C4	-6.64	1.36	1.53
7	В	1203	BXY	O4-C1	-6.10	1.35	1.43
7	А	1203	BXY	O4-C4	-5.45	1.32	1.45
7	В	1204	BXY	O4-C1	-5.00	1.37	1.43
7	В	1203	BXY	O2-C2	-4.79	1.31	1.43
7	А	1203	BXY	C2-C3	-4.71	1.40	1.53
7	А	1204	BXY	O4-C4	-4.65	1.34	1.45
7	В	1204	BXY	O4-C4	-4.38	1.35	1.45
6	В	1202	PO4	P-01	4.13	1.60	1.50
6	А	1202	PO4	P-01	4.10	1.60	1.50
7	А	1204	BXY	O3-C3	-3.97	1.33	1.43
7	А	1204	BXY	O4-C1	-3.93	1.38	1.43
7	А	1203	BXY	O3-C3	-3.74	1.34	1.43
7	А	1203	BXY	01-C1	-3.53	1.28	1.39
7	А	1204	BXY	O2-C2	-3.20	1.35	1.43
7	В	1203	BXY	O4-C4	-3.13	1.38	1.45
7	В	1203	BXY	01-C1	-3.03	1.29	1.39
7	В	1204	BXY	O3-C3	-2.94	1.36	1.43
7	А	1204	BXY	C3-C4	-2.88	1.45	1.53
7	В	1204	BXY	O2-C2	-2.85	1.36	1.43
7	В	1203	BXY	C3-C4	-2.84	1.45	1.53

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
7	В	1203	BXY	O3-C3	-2.79	1.36	1.43
7	В	1204	BXY	C3-C4	-2.76	1.45	1.53
7	В	1204	BXY	C2-C3	-2.40	1.46	1.53
6	В	1202	PO4	P-O3	2.00	1.60	1.54

All (18) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	1203	BXY	C2-C3-C4	-6.88	89.27	102.64
7	А	1203	BXY	O1-C1-O4	-6.49	102.82	111.13
7	В	1203	BXY	C1-C2-C3	-4.68	96.44	102.30
7	А	1203	BXY	O4-C4-C5	4.59	119.13	109.21
7	А	1203	BXY	C1-C2-C3	-3.82	97.52	102.30
7	А	1204	BXY	O1-C1-O4	-3.54	106.60	111.13
7	В	1203	BXY	O3-C3-C4	-3.40	101.22	111.05
7	А	1204	BXY	O5-C5-C4	-3.11	100.62	111.29
7	В	1203	BXY	01-C1-O4	-3.08	107.19	111.13
7	В	1204	BXY	O4-C4-C5	2.83	115.33	109.21
7	В	1203	BXY	C2-C3-C4	-2.79	97.22	102.64
7	А	1203	BXY	O5-C5-C4	-2.79	101.73	111.29
7	В	1203	BXY	O2-C2-C1	-2.76	104.20	111.82
7	А	1203	BXY	O4-C4-C3	-2.70	99.77	105.11
7	А	1203	BXY	O1-C1-C2	-2.50	98.46	110.39
7	В	1204	BXY	02-C2-C1	-2.25	105.60	111.82
7	A	1204	BXY	O2-C2-C3	-2.23	104.62	111.82
7	A	1203	BXY	02-C2-C1	-2.13	105.95	111.82

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	В	1204	BXY	O4-C4-C5-O5
7	В	1204	BXY	C3-C4-C5-O5
7	А	1203	BXY	O4-C4-C5-O5
7	А	1203	BXY	C3-C4-C5-O5
7	В	1203	BXY	O4-C4-C5-O5

There are no ring outliers.

3 monomers are involved in 17 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	А	1204	BXY	2	0
7	В	1204	BXY	13	0
7	А	1203	BXY	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	$Q{<}0.9$
1	А	1035/1113~(92%)	0.20	82 (7%) 12 12	4, 68, 160, 199	0
1	В	1035/1113~(92%)	0.27	104 (10%) 7 7	5,68,173,221	0
2	С	84/99~(84%)	0.41	3 (3%) 42 40	44, 82, 125, 147	0
2	D	84/99~(84%)	0.97	12 (14%) 2 2	45, 87, 126, 144	0
All	All	2238/2424 (92%)	0.27	201 (8%) 9 9	4,71,164,221	0

All (201) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	В	138	CYS	10.5
1	А	922	GLN	8.4
1	А	40	GLN	6.8
1	В	10	SER	6.5
1	А	249	LEU	6.2
2	D	62	GLU	6.2
1	В	11	ASN	5.9
1	В	680	ARG	5.3
1	В	163	ASP	5.1
1	В	171	ARG	4.8
1	А	163	ASP	4.8
1	В	684	LEU	4.6
1	А	916	ILE	4.6
1	В	240	ALA	4.6
1	В	1056	ASP	4.5
1	В	674	PRO	4.5
1	A	894	SER	4.4
1	A	135	SER	4.2
1	В	815	ASN	4.2
1	В	681	TRP	4.2
1	В	770	GLY	4.2

Mol	Chain	Res	Type	RSRZ
1	А	82	GLY	4.2
1	В	817	SER	4.1
2	С	64	LEU	4.1
1	А	1061	THR	4.0
1	А	750	ILE	4.0
2	D	61	ASP	4.0
1	А	10	SER	4.0
1	В	873	GLN	4.0
1	В	833	LEU	3.9
1	В	769	ASN	3.9
1	В	19	ALA	3.9
1	В	927	ALA	3.9
1	А	75	GLN	3.9
1	В	173	GLU	3.9
1	В	52	VAL	3.8
1	В	242	GLY	3.8
1	В	135	SER	3.8
1	А	766	PHE	3.8
1	В	838	SER	3.8
1	В	766	PHE	3.7
1	А	138	CYS	3.7
1	В	25	LEU	3.6
2	D	27	VAL	3.6
1	В	754	ALA	3.6
1	А	241	ASP	3.6
1	А	1062	ARG	3.5
1	А	924	ARG	3.5
1	А	756	GLN	3.5
1	В	813	GLY	3.5
1	В	683	ARG	3.4
2	С	77	ILE	3.4
1	А	814	ILE	3.4
1	В	21	ILE	3.4
1	В	845	VAL	3.4
1	В	686	VAL	3.3
1	А	754	ALA	3.3
1	В	12	HIS	3.3
1	А	81	VAL	3.2
1	В	450	VAL	3.2
1	А	670	ARG	3.2
1	В	756	GLN	3.1
1	В	164	ASP	3.1

7BVH

Mol	Chain	Res	Type	RSRZ
1	В	832	VAL	3.1
2	D	60	PRO	3.1
1	В	675	ASP	3.1
2	D	63	ASP	3.1
1	В	673	SER	3.1
1	В	877	GLU	3.1
1	В	682	GLN	3.0
1	А	882	THR	3.0
1	А	752	GLU	3.0
1	В	768	PRO	3.0
1	В	926	VAL	3.0
1	А	921	THR	3.0
1	В	1059	THR	3.0
1	А	253	TRP	3.0
1	А	38	VAL	3.0
1	А	812	ALA	3.0
1	В	834	GLY	3.0
2	D	8	ILE	2.9
2	D	77	ILE	2.9
1	В	170	VAL	2.9
1	А	451	SER	2.9
2	С	62	GLU	2.9
1	А	879	GLN	2.9
1	В	127	SER	2.9
1	А	1060 ALA		2.9
1	В	846	LEU	2.9
1	А	67	ASP	2.9
1	В	159	GLN	2.9
1	В	172	GLY	2.9
1	В	925	LEU	2.9
1	А	137	ASP	2.8
1	В	453	PHE	2.8
1	А	889	ASN	2.8
1	В	759	GLY	2.8
1	А	125	VAL	2.8
1	А	881	ALA	2.7
1	В	1057	LEU	2.7
1	А	880	TRP	2.7
1	В	241	ASP	2.7
1	В	814	ILE	2.7
1	В	816	GLY	2.7
1	А	1065	TRP	2.7

Mol	Chain	Res	Type	RSRZ
1	А	768	PRO	2.7
1	В	891	PRO	2.7
1	В	876	VAL	2.7
1	В	166	PRO	2.7
1	В	249	LEU	2.6
1	В	776	SER	2.6
1	В	27	THR	2.6
1	А	895	ILE	2.6
1	А	887	ALA	2.6
1	В	828	ALA	2.6
1	А	815	ASN	2.6
1	В	918	PRO	2.6
1	В	767	GLY	2.6
1	А	886	ALA	2.6
1	A	753	PRO	2.6
1	В	17	LEU	2.6
1	В	758	LEU	2.6
1	В	226	MET	2.5
1	А	159	GLN	2.5
1	А	760	ALA	2.5
1	В	18	VAL	2.5
1	А	164	ASP	2.5
1	В	42	THR	2.5
1	А	37	PRO	2.5
1	В	928	SER	2.4
1	В	819	ALA	2.4
1	А	850	TRP	2.4
1	А	88	ARG	2.4
1	В	757	ALA	2.4
1	В	85	ASN	2.4
1	B	750	ILE	2.4
2	D	80	LEU	2.4
1	В	87	ASN	2.4
2	D	28	THR	2.4
1	A	751	GLY	2.3
1	В	451	SER	2.3
1	A	250	PRO	2.3
1	A	214	LEU	2.3
1	В	765	GLY	2.3
1	В	137	ASP	2.3
1	A	915	SER	2.3
1	А	761	VAL	2.3

7BVH	[
------	---

Mol	Chain	Res	Type	RSRZ
1	А	767	GLY	2.3
1	А	162	ASP	2.3
1	В	239	CYS	2.3
1	В	174	ARG	2.3
1	А	231	LEU	2.3
1	А	1059	THR	2.3
1	В	771	ILE	2.3
1	А	813	GLY	2.3
1	А	912	PRO	2.3
1	А	245	HIS	2.3
1	А	1057	LEU	2.3
1	А	858	GLN	2.3
1	В	155	VAL	2.3
1	В	140	TYR	2.2
1	А	176	GLY	2.2
1	В	844	ALA	2.2
1	А	920	ALA	2.2
1	В	831	PRO	2.2
1	А	892	GLY	2.2
1	А	1058	GLY	2.2
1	В	152	GLY	2.2
1	В	46	ASN	2.2
1	А	817	SER	2.2
1	В	812	ALA	2.2
1	В	115	ASP	2.2
1	А	873	GLN	2.2
1	В	16	ARG	2.2
1	А	240	ALA	2.2
2	D	57	VAL	2.2
2	D	84	ASN	2.2
1	В	712	TYR	2.1
1	В	82	GLY	2.1
1	В	762	THR	2.1
1	В	238	ASP	2.1
1	В	22	ALA	2.1
1	A	877	GLU	2.1
1	A	247	ARG	2.1
1	A	233	ALA	2.1
1	В	818	ARG	2.1
1	В	23	GLY	2.1
1	В	24	LEU	2.1
1	В	253	TRP	2.1

Mol	Chain	Res	Type	RSRZ
1	В	880	TRP	2.1
1	А	891	PRO	2.1
1	А	872	ASP	2.1
1	В	148	ASP	2.0
1	А	48	PRO	2.0
1	А	57	ASP	2.0
2	D	29	PRO	2.0
1	А	39	GLU	2.0
1	А	150	VAL	2.0
1	В	53	TRP	2.0
1	А	677	PRO	2.0
1	А	853	LEU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B}$ -factors $({ m \AA}^2)$	Q<0.9
4	GLC	Н	2	11/12	0.73	0.24	$99,\!102,\!108,\!109$	0
4	BGC	Ι	1	12/12	0.74	0.39	$104,\!106,\!113,\!116$	0
4	BGC	L	1	12/12	0.82	0.57	88,95,98,99	0
3	BXY	Е	1	10/10	0.82	0.28	72,77,78,79	0
3	BXY	J	1	10/10	0.82	0.51	76,82,84,86	0
4	GLC	Ι	2	11/12	0.84	0.35	$98,\!101,\!103,\!103$	0
4	BGC	G	1	12/12	0.85	0.21	71,79,81,81	0
4	BGC	Н	1	12/12	0.86	0.20	$99,\!107,\!114,\!116$	0
3	BXY	Е	2	9/10	0.87	0.25	78,79,82,85	0
3	BXY	J	2	9/10	0.88	0.33	78,80,82,84	0
4	BGC	K	1	12/12	0.88	0.19	$49,\!59,\!66,\!66$	0
4	GLC	L	2	11/12	0.89	0.37	88,90,92,94	0
4	BGC	F	1	12/12	0.91	0.18	$36,\!40,\!44,\!45$	0
4	GLC	F	2	11/12	0.93	0.19	27,29,32,33	0
4	GLC	G	2	11/12	0.93	0.14	78,80,86,87	0
4	GLC	K	2	11/12	0.95	0.18	32,36,40,41	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
5	CA	В	1201	1/1	0.73	0.14	109,109,109,109	0
6	PO4	В	1202	5/5	0.79	0.43	$150,\!153,\!153,\!157$	0
6	PO4	А	1202	5/5	0.84	0.33	$159,\!159,\!160,\!162$	0
7	BXY	А	1204	10/10	0.87	0.24	$92,\!95,\!98,\!102$	0
7	BXY	В	1203	10/10	0.88	0.29	82,84,85,86	0
7	BXY	А	1203	10/10	0.89	0.21	$52,\!57,\!59,\!61$	0
7	BXY	В	1204	10/10	0.93	0.16	106, 111, 113, 114	0
5	CA	А	1201	1/1	0.94	0.15	88,88,88,88	0

The following is a graphical depiction of the model fit to experimental electron density of all

instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

