

May 3, 2023 – 06:50 pm BST

PDB ID	:	8BQ6
EMDB ID	:	EMD-16172
Title	:	Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (Com-
		plete conformation 2 composition)
Authors	:	Klusch, N.; Kuehlbrandt, W.
Deposited on	:	2022-11-18
Resolution	:	2.80 Å(reported)
This is	a F	full wwPDB EM Validation Report for a publicly released PDB entry

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev50
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.32.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	;	Percentile Ranks	Value
Ramachandran outliers			0.0%
Sidechain outliers			0.4%
	Worse		Better
	Percentile relativ	ve to all structures	
	Percentile relativ	ve to all EM structures	
		XX 71 1 1 1	
Metric		Whole archive	EM structures
		(# Entries)	(# Entries)

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<\!\!=\!\!5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain	
1	А	119	77% •	21%
2	В	218	• 71% •	28%
3	С	190	94%	• 5%
4	D	394	97%	••
5	Е	255	24% 75% •	25%
6	F	486	13%	11%
7	G	748	92%	8%
8	Н	325	• 100%	
9	Ι	222	74%	26%

Continued from previous page... Chain Length Quality of chain Mol 6% 10 J 20584% 15% . Κ 11 100100% 7% 12L 669 99% М 49513100% . . 14Ν 49997% 15Ο 15923% 77% 23% Р 1640278% 21% 38% 17Q 15432% 68% 12% R 18 11034% 66% 40% \mathbf{S} 971996% 47% Т 2012268% 32% 24% U 1262169% 31% 11% 22V 16983% 17% 25% 23W 13384% 16% 8% Х 241068% 92% 23% 25Υ 15979% 21% 9% Ζ 2614387% 13% • 8% 2765 \mathbf{a} 89% 11% 11% 28b 6566% 34% 8% 2988 \mathbf{c} 86% 14% 15% 30 \mathbf{d} 81 • 7% 91% 6% 83 31 е 78% 22% 32f 106• 5% 92% 18% 33 11469% 31% g 27% 98 34i 85% 15%

Continue	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
35	j	69	29% 74%	26%
36	k	72	67%	33%
37	1	125	15% 59% 419	%
38	m	71	97%	••
39	n	117	9%	• 7%
40	О	103	78%	22%
41	р	106	85%	15%
42	q	159	5 0% 50%	
43	u	63	8%	13%
44	v	113	26% 74%	
45	х	256	81%	• 18%
46	у	278	95%	5%
47	Z	275	84%	• 15%
48	AA	503	83%	17%
48	ВА	503	83%	17%
49	AB	531	92%	8%
49	BB	531	92%	8%
50	AC	393	97%	•••
50	BC	393	97%	••
51	AD	272	41%	28%
51	BD	272	72%	28%
52	AE	307	79%	21%
52	BE	307	7%	21%
53	AF	122	95%	5%
53	BF	122	5% 95%	5%

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
54	AG	72	96%	•
54	BG	72	94%	6%
55	AH	69	93%	7%
55	BH	69	43%	9%
56	AI	72	<mark>6%</mark> 79%	21%
56	BI	72	79%	21%
57	AJ	57	40% 49% 51%	
57	BJ	57	49% 51%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
66	COO	у	301	Х	-	-	-

2 Entry composition (i)

There are 69 unique types of molecules in this entry. The entry contains 96522 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	94	Total 802	C 565	N 110	0 123	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 2 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	В	157	Total 1244	C 797	N 218	0 215	S 14	0	0

• Molecule 3 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	181	Total 1545	C 997	N 266	0 276	S 6	0	0

• Molecule 4 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 2.

Mol	Chain	Residues		At	oms			AltConf	Trace
4	D	385	Total 3079	$\begin{array}{c} \mathrm{C} \\ 1957 \end{array}$	N 542	O 556	S 24	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	70	LEU	SER	conflict	UNP P93306
D	227	SER	PRO	conflict	UNP P93306
D	309	LEU	SER	conflict	UNP P93306

• Molecule 5 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	Е	192	Total 1500	C 954	N 248	O 287	S 11	0	0

• Molecule 6 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	434	Total 3368	C 2125	N 600	0 618	$\begin{array}{c} \mathrm{S} \\ \mathrm{25} \end{array}$	0	0

• Molecule 7 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	G	687	Total 5243	C 3285	N 919	O 1000	S 39	0	0

• Molecule 8 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	Н	324	Total 2536	C 1719	N 386	0 416	S 15	0	0

• Molecule 9 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 8-A, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	Ι	165	Total 1349	C 849	N 229	0 261	S 10	0	0

• Molecule 10 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	J	174	Total 1399	C 949	N 213	0 228	${ m S} 9$	0	0

• Molecule 11 is a protein called NADH dehydrogenase subunit 4L.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	К	100	Total 784	C 525	N 121	0 131	${f S}{7}$	0	0

• Molecule 12 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	L	665	Total 5222	С 3474	N 808	O 901	S 39	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
L	91	PHE	SER	conflict	UNP B5TM94

• Molecule 13 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	М	494	Total 3946	C 2664	N 610	0 647	S 25	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	326	LEU	PRO	conflict	UNP B5TM93

• Molecule 14 is a protein called NADH-ubiquinone oxidoreductase chain 2.

Mol	Chain	Residues		At	AltConf	Trace			
14	Ν	488	Total 3832	C 2582	N 578	0 644	S 28	1	0

• Molecule 15 is a protein called AT3G07480.1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Ο	123	Total 963	C 603	N 170	0 186	${f S}$ 4	0	0

• Molecule 16 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Р	316	Total 2453	C 1580	N 414	0 444	${ m S}$ 15	0	0

• Molecule 17 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Q	105	Total 837	$\begin{array}{c} \mathrm{C} \\ 536 \end{array}$	N 144	0 156	S 1	0	0

• Molecule 18 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	R	73	Total 571	C 359	N 101	O 105	S 6	0	0

• Molecule 19 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	S	93	Total 727	C 459	N 129	0 133	S 6	0	0

• Molecule 20 is a protein called Acyl carrier protein 1, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Т	83	Total 659	C 417	N 104	0 135	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called Acyl carrier protein 2, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	U	87	Total 677	С 427	N 110	0 139	S 1	0	0

• Molecule 22 is a protein called Probable NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
22	V	140	Total 1123	C 712	N 187	0 219	${ m S}{ m 5}$	0	0

• Molecule 23 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	W	112	Total 904	C 578	N 161	0 162	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8-B.

Mol	Chain	Residues		A	toms	AltConf	Trace		
24	Х	98	Total 776	C 486	N 134	0 144	S 12	0	0

• Molecule 25 is a protein called Outer envelope pore protein 16-3, chloroplastic/mitochondri al.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Y	125	Total 928	C 596	N 162	0 167	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Ζ	125	Total 997	C 640	N 175	0 177	${f S}{5}$	0	0

• Molecule 27 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
27	a	58	Total 469	C 302	N 84	O 78	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called At2g46540/F11C10.23.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	b	43	Total 315	C 206	N 51	O 55	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called Transmembrane protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	с	76	Total 617	C 396	N 115	O 100	${ m S}{ m 6}$	0	0

• Molecule 30 is a protein called Excitatory amino acid transporter.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
30	d	75	Total 592	C 382	N 106	O 99	${ m S}{ m 5}$	0	0

• Molecule 31 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 5-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	е	65	Total 554	C 343	N 103	O 100	S 8	0	0

• Molecule 32 is a protein called At4g16450.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	f	101	Total 765	C 491	N 126	0 143	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called ESSS subunit of NADH:
ubiquinone oxidoreductase (Complex I) protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
33	g	79	Total 641	C 412	N 111	0 115	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called P1.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	i	83	Total 721	C 458	N 132	0 126	${f S}{5}$	0	0

• Molecule 35 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
35	j	51	Total 415	C 275	N 73	O 64	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3-A.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
36	k	48	Total 382	C 244	N 72	O 63	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit

8, mitochondrial.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
37	1	74	Total 562	C 367	N 91	O 103	S 1	0	0

• Molecule 38 is a protein called B15 – 1 beta subcomplex subunit 4.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
38	m	70	Total 577	C 370	N 107	O 98	$\frac{S}{2}$	0	0

• Molecule 39 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	n	109	Total 911	C 580	N 170	O 160	S 1	0	0

• Molecule 40 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7.

Mol	Chain	Residues		A	AltConf	Trace			
40	О	80	Total 657	C 413	N 115	0 119	S 10	0	0

• Molecule 41 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	р	90	Total 757	C 479	N 141	0 133	${S \atop 4}$	0	0

• Molecule 42 is a protein called Probable NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues		At	oms		AltConf	Trace	
42	q	80	Total 669	C 427	N 120	O 120	${ m S} { m 2}$	1	0

• Molecule 43 is a protein called Uncharacterized protein At1g67785.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
43	u	55	Total 463	C 298	N 84	0 78	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called Uncharacterized protein At2g27730, mitochondrial.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
44	V	29	Total 219	C 142	N 38	O 39	0	0

• Molecule 45 is a protein called Gamma carbonic anhydrase-like 2, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
45	x	210	Total 1629	C 1043	N 280	O 301	${S \atop 5}$	0	0

• Molecule 46 is a protein called Gamma carbonic anhydrase 2, mitochondrial.

Mol	Chain	Residues		Ate	AltConf	Trace			
46	У	265	Total 2013	C 1258	N 359	O 388	S 8	0	0

• Molecule 47 is a protein called Gamma carbonic anhydrase 1, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
47	Z	233	Total 1772	C 1111	N 325	O 330	S 6	0	0

• Molecule 48 is a protein called Probable mitochondrial-processing peptidase subunit alpha-1, mitochondrial.

Mol	Chain	Residues		At		AltConf	Trace		
18		420	Total	С	Ν	0	\mathbf{S}	0	0
40	лл	420	3201	2034	530	621	16	0	0
18	ΡΛ	420	Total	С	Ν	0	S	0	0
40	DA	420	3202	2035	530	621	16	0	0

• Molecule 49 is a protein called Probable mitochondrial-processing peptidase subunit beta, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
49	AB	487	Total 3834	C 2407	N 672	0 743	S 12	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
49	BB	487	Total 3834	C 2407	N 672	0 743	S 12	0	0

• Molecule 50 is a protein called Cytochrome b.

Mol	Chain	Residues	Atoms				AltConf	Trace	
50	AC	387	Total 3093	C 2083	N 487	O 508	${ m S}$ 15	0	0
50	BC	387	Total 3093	C 2083	N 487	O 508	S 15	0	0

• Molecule 51 is a protein called Cytochrome b-c1 complex subunit Rieske-1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace	
51		106	Total	С	Ν	0	\mathbf{S}	0	0	
51	AD	190	1528	978	264	281	5	0	0	
51	חס	105	Total	С	Ν	0	S	0	0	
16	ЪD	BD	195	1519	973	263	278	5		

• Molecule 52 is a protein called Cytochrome c1 2, heme protein, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace						
52	ΔE	244	Total	С	Ν	Ο	\mathbf{S}	0	0						
32	AĽ	244	1917	1216	326	364	11	0	0						
52	BE	244	Total	С	Ν	Ο	\mathbf{S}	0	0						
52	DĽ	BE	BE	BE	BF	DĿ	DE	244	1917	1216	326	364	11	0	U

• Molecule 53 is a protein called Cytochrome b-c1 complex subunit 7-2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace	
53	٨F	116	Total	С	Ν	0	S	0	0	
- 55	AI	110	976	613	186	171	6	0	0	
53	BF	116	Total	С	Ν	0	S	0	0	
99	Dſ	BF 116	110	976	613	186	171	6	0	0

• Molecule 54 is a protein called Cytochrome b-c1 complex subunit 8-1, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
54		60	Total	С	Ν	Ο	S	0	0
-04	AG	09	581	387	95	98	1	0	0
54	РС	68	Total	С	Ν	Ο	S	0	0
54	DG	08	572	382	93	96	1	0	0

• Molecule 55 is a protein called Cytochrome b-c1 complex subunit 6-1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace		
55	ΔН	64	Total	С	Ν	0	S	0	0		
- 55	AII	04	518	334	87	91	6	0	0		
55	BН	63	Total	С	Ν	0	S	0	0		
55	ЪΠ	DII 05		511	329	86	90	6	0	0	

• Molecule 56 is a protein called Cytochrome b-c1 complex subunit 9, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
56	ΔŢ	57	Total	С	Ν	0	S	0	0
90	AI	57	476	310	85	80	1	0	0
56	BI	57	Total	С	Ν	Ο	S	0	0
50	DI	51	476	310	85	80	1	0	0

• Molecule 57 is a protein called Cytochrome b-c1 complex subunit 10, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
57	AJ	28	Total 203	C 137	N 33	O 33	0	0
57	BJ	28	Total 205	C 139	N 34	O 32	0	0

• Molecule 58 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
58	В	1	Total Fe S 8 4 4	0
58	F	1	TotalFeS844	0
58	G	1	Total Fe S 8 4 4	0
58	G	1	TotalFeS844	0
58	Ι	1	TotalFeS844	0
58	Ι	1	TotalFeS844	0

• Molecule 59 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
59	Е	1	TotalFeS422	0
59	G	1	TotalFeS422	0
59	AD	1	TotalFeS422	0
59	BD	1	TotalFeS422	0

• Molecule 60 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: $C_{17}H_{21}N_4O_9P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf
60	F	1	Total 31	C 17	N 4	0 9	Р 1	0

• Molecule 61 is Ubiquinone-9 (three-letter code: UQ9) (formula: $C_{54}H_{82}O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
61	Н	1	Total C O 35 31 4	0

• Molecule 62 is FE (III) ION (three-letter code: FE) (formula: Fe) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
62	О	1	Total Fe 1 1	0

• Molecule 63 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: C₂₁H₃₀N₇O₁₇P₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			AltConf
63	Р	1	Total	С	Ν	Ο	Р	0
00	1	Ĩ	48	21	7	17	3	0

• Molecule 64 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
64	R	1	Total Zn 1 1	0
64	У	1	Total Zn 1 1	0
64	AB	1	Total Zn 1 1	0
64	BB	1	Total Zn 1 1	0

• Molecule 65 is S-[2-({N-[(2R)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta -alanyl}amino)ethyl] dodecanethioate (three-letter code: 8Q1) (formula: $C_{23}H_{45}N_2O_8PS$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		A	tom	ıs			AltConf
65	117	1	Total	С	Ν	0	Р	S	0
05	vv	L	35	23	2	8	1	1	0
65	n	1	Total	С	Ν	Ο	Р	\mathbf{S}	0
00	11		35	23	2	8	1	1	0

• Molecule 66 is CROTONYL COENZYME A (three-letter code: COO) (formula: $C_{25}H_{40}N_7O_{17}P_3S$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		A	ton	ıs			AltConf
66	17	1	Total	С	Ν	Ο	Р	S	0
00	У	I	53	25	7	17	3	1	0

• Molecule 67 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: $C_{34}H_{32}FeN_4O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		At	\mathbf{oms}			AltConf
67	AC	1	Total	С	Fe	Ν	Ο	0
01	ΛU	I	43	34	1	4	4	0
67	AC	1	Total	С	Fe	Ν	Ο	0
01	110	I	43	34	1	4	4	0
67	ΑE	1	Total	С	Fe	Ν	Ο	0
01	TTL .	Ĩ	43	34	1	4	4	0
67	BC	1	Total	\mathbf{C}	Fe	Ν	Ο	0
01	DC	Ĩ	43	34	1	4	4	0
67	BC	1	Total	\mathbf{C}	Fe	Ν	Ο	0
	DC	Ĩ	43	34	1	4	4	0
67	BE	1	Total	\mathbf{C}	Fe	Ν	Ο	0
		1	43	34	1	4	4	

• Molecule 68 is 2,3-DIMETHOXY-5-METHYL-6-(3,11,15,19-TETRAMETHYL-EICOSA -2,6,10,14,18-PENTAENYL)-[1,4]BENZOQUINONE (three-letter code: UQ5) (formula: C₃₄H₅₀O₄) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
68	AC	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 38 & 34 & 4 \end{array}$	0
68	AC	1	Total C O 38 34 4	0
68	BC	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 38 & 34 & 4 \end{array}$	0

• Molecule 69 is UBIQUINONE-7 (three-letter code: UQ7) (formula: $C_{44}H_{66}O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Ato	\mathbf{ms}		AltConf
69	BC	1	Total 48	C 44	0 4	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 3

• Molecule 7: NADH dehydrogenase [ubiquinone] iron-sulfur protein 1, mitochondrial

• Molecule 8: NADH-ubiquinone oxidoreductase chain 1

Chain H:

100%

• Molecule 9: NADH dehy	drogenase [ubiquinon	e] iron-sulfur protein 8-A, r	nitochondrial
Chain I:	74%	26%	
MET ALA SER TLE TLEU LEU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	SER GLY GLY GLN GLN CLU CLU CLN CLN CLN SER SER CLN SER SER CLN SER	ARG GLY TLE SER TTR CTY CTY CTY CTY ASN ASN ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ILE SER K58 C162
R222			
• Molecule 10: NADH-ubio	quinone oxidoreducta	se chain 6	
Chain J:	84%	• 15%	
M F 72 F 72 F 100 F 100	R117 R117 R117 T119 T120 R123 R123 R123	VLIS VLAL LYS ARC GLA ASP PHE ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	ARG THR THR THR ASP PRO PRO LLEU THR THR THR TLEU
ТҮК			
• Molecule 11: NADH deh	ydrogenase subunit 4	L	
Chain K:	100%		•
There are no outlier residu	es recorded for this c	hain.	
• Molecule 12: NADH-ubic	quinone oxidoreducta	se chain 5	
Chain L:	99%		
M1 H357 H357 M61 R451 H455 H455 H455 H455 H457 M71	E510 ← E510 ← 1520 ← 0528 ← N539 ← A539 ←	0541 F542 0543 0543 0543 1548 0547 0547 0543 0545 0545 0545 0545 0545 0545 0545 0545 0545 0545 05577 0557 0557 0557 0557 0557 0557 0557 0557 0557 0557	5947 W648 W649 W649 B650 M651 B655 B654 F655 F655 F655 F655 F655 F655 F655 F
S661 F663 Y663 K665 K665 SER SER SER CLN GLN			
• Molecule 13: NADH-ubio	quinone oxidoreducta	se chain 4	
Chain M:	100%		•
MET L12 E3 H4 F5 C6 C6 C7 R73 R73 R73 R73 R77 R77 R77 S7 F7 F7 F7 F7 F7 F7 F7 F7 F7 F7 F7 F7 F7	N81		
• Molecule 14: NADH-ubio	quinone oxidoreducta	se chain 2	
Chain N:	97%		

• Molecule 24: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8-B

Chain d:	5%	70/
	91%	• 7 70
MET P2 13 Y19 D59 K66	A67 A67 A69 A70 A59 E72 E72 E72 A57 A5P A5P A5P A5P A5P	
• Molecule 31:	: NADH dehydrogenase [ubiquin	one] iron-sulfur protein 5-B
Chain e:	78%	22%
M1 R29 E30 Q62 R63 K64 L65	ARG ALA ALA ALA ALA ALA ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY THR THR HIS HIS HIS	
• Molecule 32:	: At4g16450	
Chain f:	92%	• 5%
M1 F37 M62 M100 K100	DHE	
• Molecule 33:	ESSS subunit of NADH:ubiquit	none oxidoreductase (Complex I) protein
Chain a	18%	
Cham g.	69%	31%
MET PRO SER SER GLN GLN SER LEU VAL ALA	LALA LALA LIEU ASN ASN ASN ASN ASN ASS SER SER ALA SER ALA SER ALA SER ALA SER ALA ASS ASS ASS ASS ASS ASS ASS ASS ASS	134 H37 H37 E38 E39 F41 A52 P41 A52 P42 A53 P42 A103 A104 A105 A106 A107 A108 A108 A108 A5P A5P A5P
• Molecule 34	: P1	
Chain i:	27% 85%	15%
MET G2 F3 F3 F3 F3 R14 K14 Y31 Y31	M33 H34 E35 C37 C37 C37 C37 C37 C37 C37 C37 C33 C37 C37	WE4 WE5 F165 E57 BE5 BE4 ASN THR RE8 ASN FR0 SER SER SER SER SER SER SER SER SER SER
• Molecule 35:	NADH dehydrogenase [ubiquin	one] 1 beta subcomplex subunit 2
Chain j:	29%	26%
MET GLY GLY GLY GLY GLY GLY GLY GD C9 T10	T11 T11 K13 C14 V15 K21 K22 C13 C13 C13 C13 C13 C13 C13 C13	W50 W51 G52 W63 W53 H55 G59 G59 G17 H15 G17 H15 G17 H15 H15 H15 H15 H15 H15
• Molecule 36	NADH dehydrogenase [ubiquin	one] 1 beta subcomplex subunit 3-A
Chain k:	38% 67%	33%

MET ALA ALA LEU VAL ALA ALA ALA LV CLU CLU	ALLO ALLO ALLO ALLO ALLO ALLO ALLO GLY ALLO GLY ALLO ALLO GLY ALLO ALLO ALLO ALLO ALLO ALLO ALLO AL	GLY GLY GLY
ASP ALA TYR TILE TYR HIS SER CLY GLY HIS	LEUM ASN GLY GLY CUYS ASN ASN ASN ASN ASN ASN ASN CUY TYR SER TYR CUN CUN CUN CUN CUN CUN CUN CUN CUN CUN	
• Molecule 43:	Uncharacterized protein At1g67785	
Chain u:	87% 13%	
MET V2 Q36 B40 B40 B54	K55 ARG GLU ASP ARD LEU ALA	
• Molecule 44:	Uncharacterized protein At2g27730, mitochondrial	
Chain v:	26% 74%	
MET ALA THR ARG ASN ASN LEU LEU LEU TLE VAL SER SER	ARG ARG SER SER SER SER SER SER SER SER SER SER	LYS
VAL ALA ALA GLY ALA ALA ALA SER SER SER GLU		
• Molecule 45:	Gamma carbonic anhydrase-like 2, mitochondrial	
Chain x:	81% • 18%	
Chain x:	SER THE SER ALLA ALLA ALLA ALLA ALLA ALLA ALLA AL	
Chain x:	81% · 18%	
Chain x:	81% 18% ************************************	
Chain x:	81% 18% # ###################################	
Chain x:	81% 18% ************************************	
Chain x:	81% 18% 1000 1000 1000	
Chain x:	81% 18% 18% 1	
Chain x:	81% 18% ####################################	tochondrial

Chain BD:

28%

• Molecule 54: Cytochrome b-c1 complex subunit 8-1, mitochondrial

Chain AG:		96%		·
MET LVS PS F72				
• Molecule 54: Cvt	ochrome b-c1 con	nplex subunit 8-	1. mitochondrial	
			,	
Chain BG:		94%		6%
MET CIX LVS VG P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5	E69 H70 F72			
• Molecule 55: Cyt	ochrome b-c1 con	nplex subunit 6-	1, mitochondrial	
Chain AH:		020/		70/
Cham An.		93%		7%
MET ALA ASP ASP GLU CGLU V7 V7 V7 V7 V7 V7 V7 CG A35 CG	64 / D38 D39 540 641 H42 K69			
• Molecule 55: Cyt	ochrome b-c1 con	nplex subunit 6-	1, mitochondrial	
Chain BH:	43%	91%		9%
MET ASP ASP ASP GLU GLU V7 V1 X11 Y12 L13 C13 C13 C13 C13 C13 C13 C13 C13 C13 C	E15 S16 C17 F19 F19 F19 K20 K23 K23	E27 Y28 A30 C31 V32 K33 R34 R34 I35 Q36	G37 D38 D39 G41 H42 K43 K43 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41	A 61
• Molecule 56: Cyt	ochrome b-c1 con	nplex subunit 9,	mitochondrial	
6%		, , , , , , , , , , , , , , , , , , ,		
Chain AI:	79	1%	21%	
MET CULU TYR ALA ALA ARG CLA CLA CLA CLA CLA CLY CLY CLY	R22 q67 R88 P89 P89 CLU GLU			
• Molecule 56: Cyt	ochrome b-c1 con	nplex subunit 9,	mitochondrial	
Chain BI:	- 70	0/	210	
Cham Di.	/9	1%	21%	
MET TYR ALA ALA ALA ARG ARG ARG ALA ALA ALA ALA ALA	415 F16 Y17 K18 R12 R22 G86 G86 G86 R68			
• Molecule 57: Cyt	ochrome b-c1 con	nplex subunit 10), mitochondrial	
Chain AJ:	40% 49%		51%	
	******	*******	•••••	
MET ALA GLY THR SER GLY CLEU LLEU LLEU ALA VAL LYS PRO LYS	ILE GLN 117 118 118 120 120 120 424 A22 A23	425 426 627 627 A30 A31 A32 G33 G33	V38 Q39 P40 F41 G42 W43 LYS LYS TTR TTR	TLE ASP PRO PRO PRO GLU

• Molecule 57: Cytochrome b-c1 complex subunit 10, mitochondrial

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	50886	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	215000	Depositor
Image detector	FEI FALCON IV $(4k \times 4k)$	Depositor
Maximum map value	0.088	Depositor
Minimum map value	-0.037	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.013	Depositor
Map size (Å)	429.75, 429.75, 429.75	wwPDB
Map dimensions	750, 750, 750	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.573, 0.573, 0.573	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, FE, FME, HEM, ZN, UQ5, UQ7, UQ9, COO, NDP, 8Q1, FMN, SF4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	В	ond angles
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.46	0/820	0.60	0/1113
2	В	0.36	0/1279	0.56	0/1734
3	С	0.38	0/1590	0.55	0/2152
4	D	0.39	0/3149	0.60	0/4259
5	Ε	0.34	0/1535	0.54	1/2084~(0.0%)
6	F	0.31	0/3441	0.52	1/4641~(0.0%)
7	G	0.36	0/5338	0.56	0/7231
8	Н	0.45	0/2609	0.58	0/3553
9	Ι	0.33	0/1378	0.56	0/1862
10	J	0.37	0/1435	0.55	0/1957
11	Κ	0.39	0/785	0.56	0/1062
12	L	0.37	0/5368	0.52	0/7291
13	М	0.40	0/4057	0.55	0/5513
14	Ν	0.41	0/3937	0.59	2/5345~(0.0%)
15	0	0.34	0/979	0.56	0/1326
16	Р	0.39	0/2509	0.55	0/3401
17	Q	0.29	0/862	0.48	0/1166
18	R	0.28	0/585	0.46	0/793
19	S	0.33	0/739	0.52	0/996
20	Т	0.51	0/671	0.62	0/911
21	U	0.61	0/687	0.70	0/929
22	V	0.30	0/1146	0.50	0/1555
23	W	0.42	0/923	0.52	0/1249
24	Х	0.41	0/790	0.53	0/1060
25	Y	0.32	0/944	0.59	0/1277
26	Ζ	0.35	0/1027	0.55	0/1392
27	a	0.32	0/481	0.49	0/646
28	b	0.32	0/320	0.57	0/434
29	с	0.35	0/637	0.54	0/860
30	d	0.43	0/605	0.58	0/815
31	е	0.34	0/567	0.55	0/755
32	f	0.34	0/771	0.50	0/1042

Mal	Chain	Bond	lengths	B	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	g	0.32	0/661	0.53	0/899
34	i	0.34	0/741	0.59	0/997
35	j	0.40	0/433	0.53	0/592
36	k	0.35	0/392	0.54	0/526
37	l	0.37	0/575	0.53	0/781
38	m	0.36	0/592	0.55	0/793
39	n	0.43	0/938	0.60	1/1273~(0.1%)
40	0	0.35	0/666	0.52	0/886
41	р	0.38	0/777	0.59	0/1043
42	q	0.31	0/690	0.55	0/936
43	u	0.40	0/472	0.55	0/632
44	V	0.32	0/222	0.49	0/300
45	Х	0.33	0/1669	0.56	0/2279
46	у	0.33	0/2046	0.53	0/2772
47	Z	0.36	0/1804	0.59	0/2441
48	AA	0.35	0/3265	0.54	0/4431
48	BA	0.32	0/3266	0.53	0/4433
49	AB	0.32	0/3908	0.54	0/5305
49	BB	0.31	0/3908	0.53	0/5305
50	AC	0.35	0/3208	0.48	0/4395
50	BC	0.34	0/3208	0.50	0/4395
51	AD	0.32	0/1567	0.54	0/2135
51	BD	0.31	0/1558	0.54	0/2123
52	AE	0.36	0/1968	0.52	0/2672
52	BE	0.33	0/1968	0.49	0/2672
53	AF	0.33	0/993	0.60	0/1336
53	BF	0.32	0/993	0.56	0/1336
54	AG	0.30	0/600	0.47	0/815
54	BG	0.28	0/591	0.47	0/802
55	AH	0.42	0/531	0.54	0/713
55	BH	0.29	0/524	0.44	0/703
56	AI	0.42	0/488	0.59	0/655
56	BI	0.35	0/488	0.55	0/655
57	AJ	0.27	0/210	0.41	0/290
57	BJ	0.25	0/212	0.36	0/291
All	All	0.36	0/98096	0.54	5/133016~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
14	Ν	0	1

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Е	179	PRO	N-CA-C	-7.09	93.65	112.10
39	n	51	LYS	CD-CE-NZ	6.48	126.61	111.70
14	Ν	228	MET	CG-SD-CE	-5.95	90.68	100.20
14	N	228	MET	CA-CB-CG	-5.41	104.10	113.30
6	F	91	LEU	CA-CB-CG	5.07	126.96	115.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
14	N	412[B]	TYR	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	90/119~(76%)	88~(98%)	2(2%)	0	100	100
2	В	155/218~(71%)	149 (96%)	6 (4%)	0	100	100
3	С	179/190~(94%)	177~(99%)	2 (1%)	0	100	100
4	D	383/394~(97%)	367~(96%)	15 (4%)	1 (0%)	41	72
5	E	190/255~(74%)	181 (95%)	9 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
6	F	432/486~(89%)	420 (97%)	12 (3%)	0	100	100
7	G	685/748~(92%)	665 (97%)	20 (3%)	0	100	100
8	Н	322/325~(99%)	316 (98%)	6 (2%)	0	100	100
9	Ι	163/222~(73%)	162 (99%)	1 (1%)	0	100	100
10	J	172/205~(84%)	170 (99%)	2 (1%)	0	100	100
11	K	98/100~(98%)	97 (99%)	1 (1%)	0	100	100
12	L	663/669~(99%)	638 (96%)	25 (4%)	0	100	100
13	М	492/495~(99%)	484 (98%)	8 (2%)	0	100	100
14	Ν	487/499~(98%)	475 (98%)	12 (2%)	0	100	100
15	Ο	121/159~(76%)	118 (98%)	3 (2%)	0	100	100
16	Р	314/402~(78%)	303 (96%)	11 (4%)	0	100	100
17	Q	103/154~(67%)	99 (96%)	4 (4%)	0	100	100
18	R	71/110~(64%)	70 (99%)	1 (1%)	0	100	100
19	S	91/97~(94%)	90 (99%)	1 (1%)	0	100	100
20	Т	81/122~(66%)	78 (96%)	3 (4%)	0	100	100
21	U	85/126~(68%)	78 (92%)	7 (8%)	0	100	100
22	V	138/169~(82%)	132 (96%)	6 (4%)	0	100	100
23	W	108/133~(81%)	103 (95%)	5 (5%)	0	100	100
24	Х	96/106~(91%)	94 (98%)	2(2%)	0	100	100
25	Y	123/159~(77%)	119 (97%)	4 (3%)	0	100	100
26	Ζ	123/143~(86%)	119 (97%)	4 (3%)	0	100	100
27	a	56/65~(86%)	56 (100%)	0	0	100	100
28	b	41/65~(63%)	39~(95%)	2 (5%)	0	100	100
29	с	74/88~(84%)	71 (96%)	3 (4%)	0	100	100
30	d	73/81~(90%)	71 (97%)	2(3%)	0	100	100
31	е	63/83~(76%)	62 (98%)	1 (2%)	0	100	100
32	f	99/106~(93%)	97 (98%)	2 (2%)	0	100	100
33	g	77/114~(68%)	76 (99%)	1 (1%)	0	100	100
34	i	81/98 (83%)	79 (98%)	2 (2%)	0	100	100
35	j	49/69~(71%)	48 (98%)	1 (2%)	0	100	100
36	k	46/72~(64%)	45 (98%)	1 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
37	1	70/125~(56%)	68 (97%)	2 (3%)	0	100	100
38	m	68/71~(96%)	65 (96%)	3 (4%)	0	100	100
39	n	107/117~(92%)	105 (98%)	2 (2%)	0	100	100
40	О	78/103~(76%)	75 (96%)	3 (4%)	0	100	100
41	р	88/106~(83%)	86 (98%)	2 (2%)	0	100	100
42	q	79/159~(50%)	75 (95%)	4 (5%)	0	100	100
43	u	53/63~(84%)	50 (94%)	3 (6%)	0	100	100
44	V	27/113~(24%)	26 (96%)	1 (4%)	0	100	100
45	x	208/256~(81%)	206 (99%)	2 (1%)	0	100	100
46	У	263/278~(95%)	261 (99%)	2 (1%)	0	100	100
47	Z	231/275~(84%)	228 (99%)	3 (1%)	0	100	100
48	AA	416/503~(83%)	399 (96%)	17 (4%)	0	100	100
48	BA	416/503~(83%)	402 (97%)	14 (3%)	0	100	100
49	AB	485/531~(91%)	473 (98%)	12 (2%)	0	100	100
49	BB	485/531 (91%)	478 (99%)	7 (1%)	0	100	100
50	AC	385/393~(98%)	378 (98%)	7 (2%)	0	100	100
50	BC	385/393~(98%)	377 (98%)	8 (2%)	0	100	100
51	AD	194/272~(71%)	181 (93%)	13 (7%)	0	100	100
51	BD	193/272~(71%)	182 (94%)	11 (6%)	0	100	100
52	AE	242/307~(79%)	239 (99%)	3 (1%)	0	100	100
52	BE	242/307~(79%)	240 (99%)	2 (1%)	0	100	100
53	AF	114/122~(93%)	113 (99%)	1 (1%)	0	100	100
53	BF	114/122~(93%)	113 (99%)	1 (1%)	0	100	100
54	AG	67/72~(93%)	67 (100%)	0	0	100	100
54	BG	66/72~(92%)	66 (100%)	0	0	100	100
55	AH	62/69~(90%)	60 (97%)	2 (3%)	0	100	100
55	BH	61/69~(88%)	59 (97%)	2 (3%)	0	100	100
56	AI	55/72~(76%)	53 (96%)	2 (4%)	0	100	100
56	BI	55/72~(76%)	53 (96%)	2 (4%)	0	100	100
57	AJ	26/57~(46%)	26 (100%)	0	0	100	100
57	BJ	26/57~(46%)	24 (92%)	2 (8%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
All	All	11985/14108~(85%)	11664 (97%)	320 (3%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	D	23	HIS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	85/105~(81%)	84 (99%)	1 (1%)	71	92
2	В	132/184~(72%)	129~(98%)	3(2%)	50	82
3	\mathbf{C}	171/179~(96%)	169 (99%)	2 (1%)	71	92
4	D	331/340~(97%)	329~(99%)	2 (1%)	86	96
5	Ε	166/220~(76%)	165~(99%)	1 (1%)	86	96
6	F	353/396~(89%)	353 (100%)	0	100	100
7	G	570/625~(91%)	568 (100%)	2 (0%)	91	97
8	Н	271/272~(100%)	271 (100%)	0	100	100
9	Ι	147/195~(75%)	146 (99%)	1 (1%)	84	95
10	J	156/186~(84%)	154 (99%)	2 (1%)	69	91
11	K	85/85~(100%)	85 (100%)	0	100	100
12	L	564/568~(99%)	563 (100%)	1 (0%)	93	98
13	М	433/434 (100%)	432 (100%)	1 (0%)	93	98
14	Ν	407/416~(98%)	404 (99%)	3 (1%)	84	95
15	О	108/141~(77%)	108 (100%)	0	100	100
16	Р	263/334~(79%)	262 (100%)	1 (0%)	91	97
17	Q	89/128~(70%)	89 (100%)	0	100	100
18	R	64/97~(66%)	64 (100%)	0	100	100

α \cdot \cdot \cdot	ſ		
Continued	from	previous	page
		1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
19	S	82/85~(96%)	82 (100%)	0	100	100
20	Т	78/112~(70%)	78~(100%)	0	100	100
21	U	78/113~(69%)	78~(100%)	0	100	100
22	V	123/148~(83%)	123~(100%)	0	100	100
23	W	98/114~(86%)	98~(100%)	0	100	100
24	Х	88/94~(94%)	88 (100%)	0	100	100
25	Y	92/120~(77%)	92 (100%)	0	100	100
26	Ζ	100/115~(87%)	99~(99%)	1 (1%)	76	93
27	a	48/53~(91%)	48 (100%)	0	100	100
28	b	35/53~(66%)	35 (100%)	0	100	100
29	с	66/71~(93%)	66 (100%)	0	100	100
30	d	60/66~(91%)	59 (98%)	1 (2%)	60	87
31	е	60/73~(82%)	60 (100%)	0	100	100
32	f	80/83~(96%)	78 (98%)	2 (2%)	47	80
33	g	68/96~(71%)	68 (100%)	0	100	100
34	i	75/90~(83%)	75 (100%)	0	100	100
35	j	42/51~(82%)	42 (100%)	0	100	100
36	k	39/60~(65%)	39 (100%)	0	100	100
37	1	60/97~(62%)	60~(100%)	0	100	100
38	m	58/59~(98%)	57~(98%)	1 (2%)	60	87
39	n	92/99~(93%)	92~(100%)	0	100	100
40	О	70/87~(80%)	70 (100%)	0	100	100
41	р	80/93~(86%)	80 (100%)	0	100	100
42	q	69/133~(52%)	69 (100%)	0	100	100
43	u	47/54~(87%)	47 (100%)	0	100	100
44	V	$22/\overline{84}\ (26\%)$	22 (100%)	0	100	100
45	х	$179/21\overline{6}\ (83\%)$	177 (99%)	2(1%)	73	92
46	У	221/232~(95%)	221 (100%)	0	100	100
47	Z	$188/\overline{228}~(82\%)$	185 (98%)	3(2%)	62	88
48	AA	347/408~(85%)	346~(100%)	1 (0%)	92	98
48	BA	347/408~(85%)	347 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
49	AB	415/452 (92%)	415 (100%)	0	100	100
49	BB	415/452 (92%)	415 (100%)	0	100	100
50	AC	330/336~(98%)	326 (99%)	4 (1%)	71	92
50	BC	330/336~(98%)	326~(99%)	4 (1%)	71	92
51	AD	170/232~(73%)	170 (100%)	0	100	100
51	BD	169/232~(73%)	169 (100%)	0	100	100
52	AE	200/247~(81%)	200 (100%)	0	100	100
52	BE	200/247~(81%)	198 (99%)	2 (1%)	76	93
53	AF	105/110~(96%)	105 (100%)	0	100	100
53	BF	105/110~(96%)	105 (100%)	0	100	100
54	AG	63/65~(97%)	63 (100%)	0	100	100
54	BG	62/65~(95%)	62 (100%)	0	100	100
55	AH	58/62~(94%)	58 (100%)	0	100	100
55	BH	57/62~(92%)	57 (100%)	0	100	100
56	AI	48/59~(81%)	48 (100%)	0	100	100
56	BI	48/59~(81%)	48 (100%)	0	100	100
57	AJ	16/41~(39%)	16 (100%)	0	100	100
57	BJ	$16/41 \ (39\%)$	16 (100%)	0	100	100
All	All	10294/11908~(86%)	10253 (100%)	41 (0%)	91	97

All (41) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	78	PHE
2	В	89	PHE
2	В	93	CYS
2	В	164	TYR
3	С	111	TRP
3	С	130	ARG
4	D	15	PHE
4	D	75	MET
5	Е	176	VAL
7	G	58	ASN
7	G	104	ARG
9	Ι	162	CYS
10	J	30	PHE

Mol	Chain	Res	Type
10	J	72	PHE
12	L	565	PHE
13	М	277	LEU
14	Ν	20	PHE
14	Ν	179	TYR
14	Ν	498	TYR
16	Р	123	PHE
26	Ζ	34	ARG
30	d	19	TYR
32	f	37	PHE
32	f	62	MET
38	m	71	LEU
45	Х	148	TYR
45	х	165	HIS
47	Z	13	PHE
47	Z	34	TYR
47	Z	207	TYR
48	AA	125	ARG
50	AC	85	ARG
50	AC	105	ARG
50	AC	190	TYR
50	AC	377	ARG
50	BC	85	ARG
50	BC	95	PHE
50	BC	175	PHE
50	BC	190	TYR
52	BE	201	ARG
52	BE	289	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (38) such sidechains are listed below:

Mol	Chain	Res	Type
2	В	145	GLN
2	В	203	GLN
4	D	311	HIS
6	F	404	GLN
7	G	184	GLN
7	G	302	ASN
8	Н	176	GLN
10	J	80	HIS
13	М	341	HIS
13	М	411	ASN

Mol	Chain	Res	Type
13	М	434	ASN
13	М	487	ASN
14	N	491	HIS
16	Р	343	GLN
17	Q	65	GLN
20	Т	118	HIS
23	W	102	GLN
24	Х	87	ASN
25	Y	84	GLN
25	Y	94	ASN
29	с	32	HIS
35	j	18	HIS
41	р	22	ASN
42	q	45	HIS
44	V	83	ASN
45	X	61	GLN
46	У	42	HIS
46	У	72	GLN
47	Z	223	ASN
48	AA	415	HIS
50	AC	6	GLN
50	AC	20	ASN
50	AC	183	ASN
52	AE	101	GLN
48	BA	463	GLN
49	BB	337	GLN
49	BB	453	HIS
54	BG	19	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	Type	Chain	Dog	Tink	B	ond leng	gths	E	Bond ang	gles
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	FME	А	1	1	8,9,10	1.70	1 (12%)	7,9,11	2.10	3 (42%)
32	FME	f	1	32	8,9,10	0.75	1 (12%)	7,9,11	1.73	1 (14%)
11	FME	K	1	11	8,9,10	0.95	0	7,9,11	1.17	0

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	FME	А	1	1	-	0/7/9/11	-
32	FME	f	1	32	-	5/7/9/11	-
11	FME	K	1	11	-	6/7/9/11	-

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	А	1	FME	O-C	4.15	1.36	1.19
32	f	1	FME	O-C	2.04	1.28	1.19

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
32	f	1	FME	O-C-CA	-4.27	113.59	124.78
1	А	1	FME	O-C-CA	-4.08	114.07	124.78
1	А	1	FME	C-CA-N	2.67	114.56	109.73
1	А	1	FME	CA-N-CN	2.23	126.25	122.82

There are no chirality outliers.

All (11) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	Κ	1	FME	O1-CN-N-CA
11	Κ	1	FME	N-CA-CB-CG
11	Κ	1	FME	O-C-CA-CB
32	f	1	FME	O1-CN-N-CA
32	f	1	FME	CB-CA-N-CN

Mol	Chain	Res	Type	Atoms
32	f	1	FME	N-CA-CB-CG
32	f	1	FME	C-CA-CB-CG
32	f	1	FME	CA-CB-CG-SD
11	Κ	1	FME	CA-CB-CG-SD
11	Κ	1	FME	CB-CG-SD-CE
11	Κ	1	FME	C-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 31 ligands modelled in this entry, 5 are monoatomic - leaving 26 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
1VIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
66	COO	У	301	-	45,55,55	<mark>3.96</mark>	16 (35%)	55,81,81	2.70	12 (21%)
68	UQ5	AC	502	-	38,38,38	0.52	0	46,49,49	0.69	0
58	SF4	G	803	7	0,12,12	-	-	-		
58	SF4	F	501	6	0,12,12	-	-	-		
60	FMN	F	500	-	33,33,33	1.06	2 (6%)	48,50,50	1.24	6 (12%)
67	HEM	BC	500	50	41,50,50	1.41	3 (7%)	45,82,82	1.36	7 (15%)
61	UQ9	Н	500	-	35,35,58	0.79	2 (5%)	42,45,73	0.95	5 (11%)
68	UQ5	AC	503	-	38,38,38	0.47	0	46,49,49	0.89	1 (2%)
59	FES	AD	301	51	0,4,4	-	-	-		
63	NDP	Р	500	-	45,52,52	0.63	1 (2%)	53,80,80	0.68	1 (1%)
59	FES	BD	301	51	0,4,4	-	-	-		
67	HEM	AC	500	50	41,50,50	1.43	3 (7%)	45,82,82	1.36	6 (13%)

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
65	8Q1	W	200	-	31,34,34	0.32	0	40,43,43	0.49	0
58	SF4	Ι	500	9	0,12,12	-	-	-		
58	SF4	В	500	2	0,12,12	-	-	-		
67	HEM	BE	400	52	41,50,50	1.41	3 (7%)	45,82,82	1.39	6 (13%)
59	FES	G	801	7	0,4,4	-	-	-		
59	FES	Е	500	5	0,4,4	-	-	-		
68	UQ5	BC	502	-	38,38,38	0.46	0	46,49,49	0.70	0
67	HEM	BC	501	50	41,50,50	1.38	5 (12%)	45,82,82	1.83	11 (24%)
69	UQ7	BC	503	-	48,48,48	0.44	0	58,61,61	0.59	0
58	SF4	Ι	501	9	0,12,12	-	-	-		
67	HEM	AC	501	50	41,50,50	1.38	6 (14%)	45,82,82	1.80	10 (22%)
65	8Q1	n	200	-	31,34,34	0.30	0	40,43,43	0.62	1 (2%)
58	SF4	G	802	7	0,12,12	-	-	-		
67	HEM	AE	400	52	41,50,50	1.40	3 (7%)	45,82,82	1.38	7 (15%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
66	COO	У	301	-	1/1/12/16	21/50/70/70	0/3/3/3
68	UQ5	AC	502	-	-	7/33/57/57	0/1/1/1
58	SF4	G	803	7	-	-	0/6/5/5
58	SF4	F	501	6	-	-	0/6/5/5
60	FMN	F	500	-	-	5/18/18/18	0/3/3/3
67	HEM	BC	500	50	-	2/12/54/54	-
61	UQ9	Н	500	-	-	19/30/54/81	0/1/1/1
68	UQ5	AC	503	-	-	12/33/57/57	0/1/1/1
63	NDP	Р	500	-	-	6/30/77/77	0/5/5/5
59	FES	AD	301	51	-	-	0/1/1/1
59	FES	BD	301	51	-	-	0/1/1/1
67	HEM	AC	500	50	-	4/12/54/54	-
65	8Q1	W	200	-	-	22/41/41/41	-
58	SF4	Ι	500	9	-	-	0/6/5/5
58	SF4	В	500	2	-	-	0/6/5/5
67	HEM	BE	400	52	-	2/12/54/54	-
59	FES	G	801	7	-	-	0/1/1/1
59	FES	Ē	500	5	-	_	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
68	UQ5	BC	502	-	-	8/33/57/57	0/1/1/1
67	HEM	BC	501	50	-	7/12/54/54	-
69	UQ7	BC	503	-	-	8/45/69/69	0/1/1/1
58	SF4	Ι	501	9	-	-	0/6/5/5
67	HEM	AC	501	50	-	7/12/54/54	-
65	8Q1	n	200	-	-	19/41/41/41	-
58	SF4	G	802	7	-	-	0/6/5/5
67	HEM	AE	400	52	-	2/12/54/54	-

All (44) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(\text{\AA})$	Ideal(Å)
66	У	301	COO	C2A-N1A	-15.84	1.04	1.33
66	у	301	COO	C2A-N3A	-8.97	1.17	1.32
66	У	301	COO	C5A-C4A	8.01	1.62	1.40
66	У	301	COO	C1-N1	7.63	1.50	1.33
66	у	301	COO	C4-N2	6.55	1.48	1.33
66	У	301	COO	O4X-C1X	6.09	1.49	1.41
66	у	301	COO	C6A-N1A	-5.59	1.12	1.37
66	У	301	COO	C4A-N3A	5.53	1.43	1.35
67	AE	400	HEM	C3C-C2C	-4.07	1.34	1.40
66	у	301	COO	C5A-N7A	-4.03	1.25	1.39
67	BE	400	HEM	C3C-C2C	-3.98	1.34	1.40
67	BC	500	HEM	C3C-C2C	-3.98	1.34	1.40
66	у	301	COO	C2X-C1X	-3.92	1.47	1.53
67	AC	500	HEM	C3C-C2C	-3.84	1.35	1.40
67	AC	501	HEM	C1B-NB	-3.82	1.33	1.40
67	BC	501	HEM	C1B-NB	-3.80	1.33	1.40
60	F	500	FMN	C4A-N5	3.71	1.38	1.30
67	BE	400	HEM	C3C-CAC	3.70	1.55	1.47
67	AC	500	HEM	C3C-CAC	3.63	1.55	1.47
67	BC	500	HEM	C3C-CAC	3.54	1.55	1.47
67	AE	400	HEM	C3C-CAC	3.48	1.54	1.47
67	BC	501	HEM	C4D-ND	-3.44	1.34	1.40
67	AC	501	HEM	C4D-ND	-3.38	1.34	1.40
66	У	301	COO	P3X-O3X	3.34	1.65	1.59
67	AC	501	HEM	FE-NB	3.10	2.12	1.96
66	У	301	COO	C6A-N6A	3.04	1.45	1.34
67	BC	501	HEM	FE-NB	2.98	2.11	1.96
67	BC	500	HEM	CAB-C3B	2.84	1.55	1.47
67	AC	500	HEM	CAB-C3B	2.82	1.55	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
66	У	301	COO	C3-C4	2.71	1.56	1.51
61	Н	500	UQ9	C4-C5	-2.69	1.41	1.48
67	BE	400	HEM	CAB-C3B	2.67	1.54	1.47
67	AE	400	HEM	CAB-C3B	2.63	1.54	1.47
66	У	301	COO	C2X-C3X	-2.38	1.47	1.52
66	У	301	COO	O3-C4	-2.32	1.18	1.23
66	У	301	COO	P1A-O5X	2.29	1.68	1.59
67	BC	501	HEM	C1D-ND	-2.21	1.34	1.38
60	F	500	FMN	C10-N1	2.19	1.37	1.33
61	Н	500	UQ9	C3-C2	-2.18	1.42	1.48
67	BC	501	HEM	C4B-NB	-2.10	1.34	1.38
67	AC	501	HEM	C4B-NB	-2.06	1.34	1.38
67	AC	501	HEM	C1D-ND	-2.06	1.34	1.38
67	AC	501	HEM	CHB-C1B	2.01	1.40	1.35
63	Р	500	NDP	C8A-N7A	-2.01	1.31	1.34

All (73) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
66	У	301	COO	C4A-C5A-N7A	-14.04	94.77	109.40
66	у	301	COO	C6-S1-C7	7.42	109.12	99.80
66	У	301	COO	C1X-N9A-C4A	-6.80	114.70	126.64
68	AC	503	UQ5	C7-C6-C5	-4.38	113.21	118.48
67	BC	501	HEM	CHD-C1D-ND	4.38	129.19	124.43
67	AC	501	HEM	CHD-C1D-ND	4.34	129.15	124.43
67	AC	501	HEM	CHC-C4B-NB	4.29	129.09	124.43
66	У	301	COO	C2A-N1A-C6A	4.27	126.06	118.75
67	BC	501	HEM	CHC-C4B-NB	4.26	129.06	124.43
67	AC	501	HEM	C1B-NB-C4B	4.23	109.44	105.07
67	BC	501	HEM	C1B-NB-C4B	3.99	109.19	105.07
67	BC	501	HEM	CHA-C4D-ND	3.82	129.10	124.38
67	AC	501	HEM	CHA-C4D-ND	3.74	129.00	124.38
67	BC	501	HEM	CHB-C1B-NB	3.66	128.91	124.38
67	AC	501	HEM	CHB-C1B-NB	3.62	128.86	124.38
66	у	301	COO	C5A-C6A-N1A	3.34	127.92	120.35
60	F	500	FMN	C4-N3-C2	-3.24	119.66	125.64
67	BE	400	HEM	CMC-C2C-C3C	3.07	130.42	124.68
67	AE	400	HEM	CMC-C2C-C3C	3.02	130.33	124.68
60	F	500	FMN	C4A-C10-N10	3.02	120.89	116.48
67	BC	501	HEM	C4D-ND-C1D	2.98	108.15	105.07
66	У	301	COO	C5A-C6A-N6A	-2.96	115.85	120.35
67	AE	400	HEM	C4D-ND-C1D	2.93	108.09	105.07

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
67	AC	500	HEM	C4B-CHC-C1C	2.83	126.30	122.56
67	AE	400	HEM	CAA-CBA-CGA	-2.78	105.96	113.76
61	Н	500	UQ9	C7-C6-C5	2.77	121.81	118.48
66	у	301	COO	C3X-C2X-C1X	2.76	106.00	99.89
67	AC	500	HEM	C1B-NB-C4B	2.75	107.91	105.07
61	Н	500	UQ9	C1-C6-C5	-2.73	117.01	119.58
66	У	301	COO	C2-C3-C4	-2.72	107.83	112.36
67	AC	501	HEM	C4D-ND-C1D	2.68	107.84	105.07
60	F	500	FMN	C4A-C4-N3	2.67	119.96	113.19
67	BC	500	HEM	C4D-ND-C1D	2.65	107.81	105.07
66	У	301	COO	P1A-O3A-P2A	-2.63	123.81	132.83
67	AC	500	HEM	C4D-ND-C1D	2.61	107.77	105.07
67	BE	400	HEM	CAA-CBA-CGA	-2.60	106.47	113.76
67	BE	400	HEM	C4D-ND-C1D	2.59	107.75	105.07
67	BC	500	HEM	CBD-CAD-C3D	-2.58	105.47	112.63
67	BC	500	HEM	C1B-NB-C4B	2.55	107.71	105.07
66	у	301	COO	C10-C9-C8	-2.50	120.41	125.34
67	BC	500	HEM	CMC-C2C-C3C	2.47	129.30	124.68
67	AC	501	HEM	CHD-C1D-C2D	-2.46	121.13	124.98
67	BE	400	HEM	CAD-CBD-CGD	-2.45	108.33	113.60
60	F	500	FMN	C10-C4A-N5	-2.43	119.70	124.86
67	BC	501	HEM	C4B-C3B-C2B	-2.40	105.21	107.11
67	AC	500	HEM	CMC-C2C-C3C	2.40	129.17	124.68
66	у	301	COO	C3-C4-N2	2.40	120.45	116.42
61	Н	500	UQ9	C4-C3-C2	-2.37	116.02	120.68
60	F	500	FMN	O4-C4-C4A	-2.35	120.38	126.60
67	BE	400	HEM	CMA-C3A-C4A	-2.34	124.86	128.46
67	BC	501	HEM	CHD-C1D-C2D	-2.29	121.41	124.98
67	BC	500	HEM	C4C-CHD-C1D	2.27	125.55	122.56
67	AC	501	HEM	C4B-C3B-C2B	-2.26	105.32	107.11
67	AE	400	HEM	C4B-CHC-C1C	2.21	125.48	122.56
60	F	500	FMN	C4A-C10-N1	-2.18	119.66	124.73
67	AC	500	HEM	CBD-CAD-C3D	-2.14	106.67	112.63
67	BC	500	HEM	C3D-C4D-ND	-2.14	107.78	110.17
66	У	301	COO	C6-C5-N2	-2.13	107.94	112.42
67	AC	501	HEM	CHA-C4D-C3D	-2.12	121.36	125.33
67	BC	501	HEM	CHB-C1B-C2B	-2.11	120.88	126.72
67	AC	500	HEM	CMA-C3A-C4A	-2.11	125.22	128.46
67	BC	501	HEM	CHA-C4D-C3D	-2.10	121.38	125.33
61	H	500	UQ9	C6-C1-C2	-2.10	117.53	119.18
67	BC	500	HEM	C4B-CHC-C1C	2.09	125.32	122.56
67	BE	400	HEM	C3D-C4D-ND	-2.07	107.86	110.17

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
67	AE	400	HEM	C3D-C4D-ND	-2.05	107.88	110.17
67	AE	400	HEM	CMA-C3A-C4A	-2.05	125.31	128.46
63	Р	500	NDP	C5A-C6A-N6A	2.04	123.45	120.35
67	AC	501	HEM	CHB-C1B-C2B	-2.03	121.11	126.72
65	n	200	8Q1	C37-C38-C39	2.03	115.73	112.36
67	BC	501	HEM	O2A-CGA-CBA	2.03	120.54	114.03
61	Н	500	UQ9	C3-C4-C5	-2.02	116.71	120.68
67	AE	400	HEM	C1B-NB-C4B	2.02	107.16	105.07

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
66	У	301	COO	C13

All (151) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
60	F	500	FMN	N10-C1'-C2'-O2'
60	F	500	FMN	N10-C1'-C2'-C3'
60	F	500	FMN	C5'-O5'-P-O2P
60	F	500	FMN	C5'-O5'-P-O3P
61	Н	500	UQ9	C17-C18-C19-C21
61	Н	500	UQ9	C17-C18-C19-C20
61	Н	500	UQ9	C12-C11-C9-C10
61	Н	500	UQ9	C12-C11-C9-C8
61	Н	500	UQ9	C7-C8-C9-C11
61	Н	500	UQ9	C7-C8-C9-C10
65	W	200	8Q1	O27-C28-C29-C31
65	W	200	8Q1	O27-C28-C29-C32
65	W	200	8Q1	C29-C28-O27-P24
65	W	200	8Q1	C28-C29-C32-C34
65	W	200	8Q1	C28-C29-C32-O33
65	W	200	8Q1	C30-C29-C32-C34
65	W	200	8Q1	C30-C29-C32-O33
65	W	200	8Q1	C31-C29-C32-C34
65	W	200	8Q1	C31-C29-C32-O33
65	W	200	8Q1	C28-O27-P24-O2
65	W	200	8Q1	C28-O27-P24-O1
65	n	200	8Q1	O4-C1-S44-C43
65	n	200	8Q1	C6-C1-S44-C43
65	n	200	8Q1	C29-C32-C34-N36
65	n	200	8Q1	C29-C32-C34-O35

Mol	Chain	Res	Type	Atoms
65	n	200	8Q1	O33-C32-C34-N36
65	n	200	8Q1	O33-C32-C34-O35
65	n	200	8Q1	C32-C34-N36-C37
65	n	200	8Q1	N36-C37-C38-C39
66	у	301	COO	C13-C11-C12-O6A
66	y	301	COO	C14-C11-C12-O6A
66	y	301	COO	C15-C11-C12-O6A
66	y	301	COO	C5X-O5X-P1A-O2A
66	y	301	COO	C5X-O5X-P1A-O1A
66	y	301	COO	O4X-C4X-C5X-O5X
66	y	301	COO	C3X-O3X-P3X-O7A
66	y	301	COO	O4-C7-S1-C6
66	y	301	COO	C8-C7-S1-C6
66	y	301	COO	S1-C7-C8-C9
69	BC	503	UQ7	C14-C16-C17-C18
69	BC	503	UQ7	C23-C24-C26-C27
69	BC	503	UQ7	C25-C24-C26-C27
68	BC	502	UQ5	C12-C11-C9-C10
68	BC	502	UQ5	C12-C11-C9-C8
65	n	200	8Q1	O35-C34-N36-C37
61	Н	500	UQ9	C22-C23-C24-C25
61	Н	500	UQ9	C12-C13-C14-C15
61	Н	500	UQ9	C22-C23-C24-C26
61	Н	500	UQ9	C12-C13-C14-C16
66	у	301	COO	C3X-C4X-C5X-O5X
61	Н	500	UQ9	C24-C26-C27-C28
68	AC	502	UQ5	C12-C11-C9-C10
68	BC	502	UQ5	C25-C24-C26-C27
68	AC	502	UQ5	C12-C11-C9-C8
68	BC	502	UQ5	C23-C24-C26-C27
61	Н	500	UQ9	C19-C21-C22-C23
61	Н	500	UQ9	C14-C16-C17-C18
68	AC	502	UQ5	C9-C11-C12-C13
68	AC	503	UQ5	C14-C16-C17-C18
68	AC	503	UQ5	C19-C21-C22-C23
68	BC	502	UQ5	C19-C21-C22-C23
69	BC	503	UQ7	C9-C11-C12-C13
69	BC	503	UQ7	C19-C21-C22-C23
69	BC	503	UQ7	C29-C31-C32-C33
66	у	301	COO	C2X-C3X-O3X-P3X
65	Ŵ	200	8Q1	O40-C39-N41-C42
65	W	200	8Q1	C38-C39-N41-C42

Continued from previous page...

Continuea from previous page							
Mol	Chain	\mathbf{Res}	Type	Atoms			
63	Р	500	NDP	C2D-C1D-N1N-C2N			
63	Р	500	NDP	C2D-C1D-N1N-C6N			
67	BC	501	HEM	C2A-CAA-CBA-CGA			
68	AC	503	UQ5	C24-C26-C27-C28			
68	BC	502	UQ5	C9-C11-C12-C13			
66	У	301	COO	C4X-C3X-O3X-P3X			
61	Н	500	UQ9	C16-C17-C18-C19			
68	AC	503	UQ5	C15-C14-C16-C17			
65	W	200	8Q1	C6-C7-C8-C9			
65	W	200	8Q1	O27-C28-C29-C30			
65	W	200	8Q1	C11-C12-C13-C14			
65	n	200	8Q1	C7-C8-C9-C10			
65	n	200	8Q1	C9-C10-C11-C12			
67	AC	501	HEM	C2A-CAA-CBA-CGA			
61	Н	500	UQ9	C15-C14-C16-C17			
61	Н	500	UQ9	C13-C14-C16-C17			
65	n	200	8Q1	C10-C11-C12-C13			
68	AC	503	UQ5	C18-C19-C21-C22			
66	У	301	COO	O4-C7-C8-C9			
68	AC	503	UQ5	C20-C19-C21-C22			
68	AC	503	UQ5	C13-C14-C16-C17			
68	AC	502	UQ5	C6-C7-C8-C9			
65	W	200	8Q1	C13-C14-C15-C16			
60	F	500	FMN	C5'-O5'-P-O1P			
68	BC	502	UQ5	C24-C26-C27-C28			
68	AC	503	UQ5	C12-C11-C9-C10			
65	W	200	8Q1	O4-C1-S44-C43			
65	W	200	8Q1	C1-C6-C7-C8			
65	W	200	8Q1	C7-C8-C9-C10			
65	n	200	8Q1	O27-C28-C29-C31			
65	W	200	8Q1	C6-C1-S44-C43			
67	AC	501	HEM	C2B-C3B-CAB-CBB			
67	BC	501	HEM	C2B-C3B-CAB-CBB			
68	AC	503	UQ5	C12-C11-C9-C8			
68	AC	503	UQ5	C2-C3-O3-C3M			
63	Р	500	NDP	O4D-C1D-N1N-C2N			
66	У	301	COO	C12-O6A-P2A-O3A			
66	У	301	COO	P1A-O3A-P2A-O5A			
66	У	301	COO	C12-O6A-P2A-O4A			
65	n	200	8Q1	O27-C28-C29-C32			
63	Р	500	NDP	O4D-C1D-N1N-C6N			
63	Р	500	NDP	O4B-C4B-C5B-O5B			

Mol	Chain	Res	Type	Atoms		
61	H	500	UQ9	C20-C19-C21-C22		
65	n	200	8Q1	O27-C28-C29-C30		
65	n	200	8Q1	C11-C10-C9-C8		
68	BC	502	UQ5	C14-C16-C17-C18		
67	BC	501	HEM	C4B-C3B-CAB-CBB		
69	BC	503	UQ7	C28-C29-C31-C32		
67	AE	400	HEM	CAA-CBA-CGA-O1A		
65	W	200	8Q1	C11-C10-C9-C8		
69	BC	503	UQ7	C30-C29-C31-C32		
67	BE	400	HEM	CAA-CBA-CGA-O2A		
68	AC	503	UQ5	C4-C3-O3-C3M		
67	BE	400	HEM	CAA-CBA-CGA-O1A		
67	AE	400	HEM	CAA-CBA-CGA-O2A		
68	AC	502	UQ5	C15-C14-C16-C17		
68	AC	502	UQ5	C2-C3-O3-C3M		
66	у	301	COO	C5-C6-S1-C7		
61	Н	500	UQ9	C18-C19-C21-C22		
67	AC	500	HEM	CAA-CBA-CGA-O2A		
67	AC	501	HEM	CAD-CBD-CGD-O2D		
67	AC	501	HEM	CAD-CBD-CGD-O1D		
65	n	200	8Q1	C28-O27-P24-O2		
66	У	301	COO	C3X-O3X-P3X-O9A		
68	AC	502	UQ5	C13-C14-C16-C17		
68	AC	503	UQ5	C5-C6-C7-C8		
67	BC	500	HEM	CAA-CBA-CGA-O2A		
67	BC	501	HEM	CAA-CBA-CGA-O2A		
61	Н	500	UQ9	C2-C3-O3-C3M		
67	BC	501	HEM	CAD-CBD-CGD-O2D		
67	AC	500	HEM	CAA-CBA-CGA-O1A		
67	BC	500	HEM	CAA-CBA-CGA-O1A		
67	AC	501	HEM	C4B-C3B-CAB-CBB		
67	BC	501	HEM	CAA-CBA-CGA-O1A		
65	n	200	8Q1	C31-C29-C32-C34		
67	AC	501	HEM	CAA-CBA-CGA-O2A		
67	BC	501	HEM	CAD-CBD-CGD-O1D		
66	У	301	COO	C5X-O5X-P1A-O3A		
66	У	301	COO	P1A-O3A-P2A-O4A		
67	AC	500	HEM	CAD-CBD-CGD-O2D		
63	Р	500	NDP	C2N-C3N-C7N-N7N		
67	AC	501	HEM	CAA-CBA-CGA-O1A		
67	AC	500	HEM	CAD-CBD-CGD-O1D		
65	n	200	8Q1	C28-C29-C32-C34		

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16172. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

Primary map 6.1.1

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 375

Y Index: 375

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 366

Y Index: 283

Z Index: 345

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.013. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 348 $\rm nm^3;$ this corresponds to an approximate mass of 314 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.357 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.80	-	-
Author-provided FSC curve	2.79	3.42	2.87
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-16172 and PDB model 8BQ6. Per-residue inclusion information can be found in section 3 on page 23.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.013 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.013).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 76% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.013) and Q-score for the entire model and for each chain.

All 0.7580 0.6280 A 0.9520 0.6900 AA 0.5340 0.5470 AB 0.7810 0.6360 AC 0.8840 0.6700 AD 0.4040 0.5070 AE 0.8620 0.6630 AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 BI 0.66970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930	\mathbf{Chain}	Atom inclusion	Q-score
A 0.9520 0.6900 AA 0.5340 0.5470 AB 0.7810 0.6360 AC 0.8840 0.6700 AD 0.4040 0.5070 AE 0.8620 0.6630 AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 BI 0.66970 0.6260 C 0.8700 0.7160 E 0.6000	All	0.7580	0.6280
AA 0.5340 0.5470 AB 0.7810 0.6360 AC 0.8840 0.6700 AD 0.4040 0.5070 AE 0.8620 0.6630 AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6510 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390	А	0.9520	0.6900
AB 0.7810 0.6360 AC 0.8840 0.6700 AD 0.4040 0.5070 AE 0.8620 0.6630 AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7730 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.66390 H 0.9370 0.66390 H 0.9370 0.6680 V 0.8790 0.6680	AA	0.5340	0.5470
AC 0.8840 0.6700 AD 0.4040 0.5070 AE 0.8620 0.6630 AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6680 I 0.9470 0.7170 J 0.8790 0.6680	AB	0.7810	0.6360
AD 0.4040 0.5070 AE 0.8620 0.6630 AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6510 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6680 J 0.8790 0.6680	AC	0.8840	0.6700
AE 0.8620 0.6630 AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680 <td>AD</td> <td>0.4040</td> <td>0.5070</td>	AD	0.4040	0.5070
AF 0.8600 0.6720 AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6330 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6680 J 0.8790 0.6680	AE	0.8620	0.6630
AG 0.8150 0.6300 AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BH 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6680 H 0.9370 0.6680 <td>AF</td> <td>0.8600</td> <td>0.6720</td>	AF	0.8600	0.6720
AH 0.7460 0.5890 AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.6510 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 H 0.9370 0.6680	AG	0.8150	0.6300
AI 0.7580 0.6320 AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6600 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.6510 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	AH	0.7460	0.5890
AJ 0.3000 0.4920 B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	AI	0.7580	0.6320
B 0.9500 0.7180 BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170	AJ	0.3000	0.4920
BA 0.5760 0.5650 BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	В	0.9500	0.7180
BB 0.7830 0.6290 BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 F 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BA	0.5760	0.5650
BC 0.8420 0.6490 BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BB	0.7830	0.6290
BD 0.4270 0.5060 BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BC	0.8420	0.6490
BE 0.7980 0.6330 BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BD	0.4270	0.5060
BF 0.8160 0.6390 BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BE	0.7980	0.6330
BG 0.6800 0.6010 BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BF	0.8160	0.6390
BH 0.4760 0.5230 BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BG	0.6800	0.6010
BI 0.6510 0.5710 BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BH	0.4760	0.5230
BJ 0.5450 0.5330 C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BI	0.6510	0.5710
C 0.8700 0.7030 D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	BJ	0.5450	0.5330
D 0.9430 0.7160 E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	С	0.8700	0.7030
E 0.6000 0.5770 F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	D	0.9430	0.7160
F 0.6970 0.6260 G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	Ε	0.6000	0.5770
G 0.7340 0.6390 H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	F	0.6970	0.6260
H 0.9370 0.6930 I 0.9470 0.7170 J 0.8790 0.6680	G	0.7340	0.6390
I 0.9470 0.7170 J 0.8790 0.6680	H	0.9370	0.6930
J 0.8790 0.6680	Ι	0.9470	0.7170
	J	0.8790	0.6680
к 0.9390 0.7030	K	0.9390	0.7030
L 0.8040 0.6340	L	0.8040	0.6340
M 0.8840 0.6630	М	0.8840	0.6630
N 0.9120 0.6930	Ν	0.9120	0.6930

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
0	0.9420	0.6630
Р	0.5970	0.5790
Q	0.4090	0.5980
R	0.7530	0.6680
S	0.4770	0.5330
Т	0.3030	0.4250
U	0.5600	0.4830
V	0.6930	0.6390
W	0.5540	0.5930
Х	0.7130	0.5920
Y	0.5750	0.4950
Z	0.7760	0.6180
a	0.8520	0.6460
b	0.7680	0.5950
С	0.6990	0.5860
d	0.7310	0.5990
е	0.8340	0.6500
f	0.8870	0.6750
g	0.6300	0.5600
i	0.5660	0.5190
j	0.4430	0.4690
k	0.3950	0.4610
1	0.5870	0.5510
m	0.7310	0.6100
n	0.7370	0.5620
О	0.5320	0.5230
р	0.6880	0.5690
q	0.8280	0.6690
u	0.7270	0.5670
V	0.8550	0.6630
X	0.9380	0.7090
У	0.8800	0.6720
Z	0.8710	0.6690

