

wwPDB EM Validation Summary Report (i)

Apr 27, 2024 – 09:33 am BST

:	8BN3
:	EMD-16127
:	Yeast 80S, ES7s delta, eIF5A, Stm1 containing
:	Dimitrova-Paternoga, L.; Paternoga, H.; Wilson, D.N.
:	2022-11-12
:	2.40 Å(reported)
	: : : :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			58%		
1	В	217	82%	14%	•
			86%		
2	S5	206	97%		•
			91%		
3	C0	96	84%	14%	•
			41%		
4	C4	127	87%	10%	••
			64%		
5	C5	124	85%	7% 7	%
			69%		
6	C8	145	92%	7	% •
			79%		
7	D0	107	95%		5%

Mol	Chain	Length	Quality of chain							
8	D5	70	99% 	11%						
9	D8	63	95%							
10	D	15	55%							
10	P	10	± 100%							
11	3	121	80%	19% •						
12	4	158	74%	22% ••						
13	1	3162	6% 70%	25% 5% ·						
14	2	1737	64%	31% •						
15	80	951	35%							
10	50	201	77% 71%	• 19%						
16	S1	214	92%	6% •						
17	S2	217	93%	6% •						
18	S3	223	67%	7% •						
10	S6	226	70%	EN/						
15	50	220	61%	570						
20	S7	184	96%	••						
21	S8	188	95%							
22	S9	185	97%	•••						
23	C1	155	83%	6% 10%						
20	C2	150	21%	078 • 1078						
24	03	150	95% 76%	• •						
25	C6	141	91% 62%	6% ·						
26	C7	120	72% 5%	23%						
27	C9	143	94%	6% •						
28	D1	87	25%	7% •						
29	D2	129	95%	5%•						
30	D3	144	5%	6%						
01		19/	60%	070 ••						
51	D4	154	<u>96%</u> 20%	•						
32	D6	97	88%	8% •						

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
			48%	
33	D7	81	100%	
34	D9	53	87%	6% 8%
35	E0	60	50% 92%	7% •
36	SR	318	100% 	•
37	L2	252	93%	5% •
38	L3	386	90%	9% •
39	L4	361	91%	7% •••
40	L5	295	92%	5% ••
41	L6	156	8%	6% ••
42	L7	222	• 95%	
43	L8	233	88%	5% 7%
44	L9	189	91%	8% •
45	M0	209	91%	7% •
46	M1	168	93%	5%•
47	M3	193	91%	9% •
48	M4	136	90%	8% ••
49	M5	202	93%	• •
50	M6	197	• 92%	6% ••
51	M7	183	• 90%	• • 5%
52	M8	185	91%	6% •
53	M9	188	90%	7% ••
54	N0	172	92%	7% •
55	N1	159	94%	6% •
56	N2	100	97%	••
57	N3	136	91%	7% ••

Mol	Chain	Length	Quality of chain	
58	N4	98	60% · 37%	
59	N5	121	90%	7% ••
60	N6	126	91%	8% •
61	N7	135	91%	8% •
62	N8	148	92%	7% •
63	N9	56	93%	• •
64	O0	97	88%	11% ·
65	O1	109	91%	6% • •
66	O2	127	91%	6% ••••
67	O3	106	93%	6%•
68	O4	111	90%	7% ••
69	O5	119	92%	
70	O6	99	95%	• •
71	07	86	79% 13%	• • •
72	08	77	94%	5%•
73	O9	50	86% 12	2% •
74	Q0	52	92%	
75	Q1	25	100%	
76	Q2	105	90%	9% •
77	Q3	91	97%	•
78	SM	118	97%	•
79	eI	145	97%	•
80	S4	260	95%	5%
81	$\mathrm{E1}$	71	49% 46% • 51%	

Continued from previous page...

2 Entry composition (i)

There are 87 unique types of molecules in this entry. The entry contains 201671 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 60S ribosomal protein L1-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	В	216	Total 1710	C 1092	N 298	0 311	${f S}$ 9	0	0

• Molecule 2 is a protein called Rps5p.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	S5	206	Total 1609	C 1007	N 300	O 299	${ m S} { m 3}$	0	0

• Molecule 3 is a protein called Small ribosomal subunit protein eS10A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
3	C0	96	Total 818	C 530	N 133	0 153	${S \over 2}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
C0	89	ALA	GLY	conflict	UNP Q08745

• Molecule 4 is a protein called 40S ribosomal protein S14-B.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	C4	126	Total 933	C 572	N 185	0 173	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called RPS15 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
5	C5	115	Total 912	C 580	N 170	0 155	${ m S} 7$	0	0

• Molecule 6 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	C8	145	Total 1192	C 743	N 237	O 210	${ m S} { m 2}$	0	0

• Molecule 7 is a protein called RPS20 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	D0	107	Total 855	C 539	N 156	O 159	S 1	0	0

• Molecule 8 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
8	D5	70	Total 563	C 360	N 104	O 99	0	0

• Molecule 9 is a protein called RPS28A isoform 1.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
0	<u>D8</u>	62	Total	С	N	0	S	0	0
9	Do	02	490	302	98	89	1	0	0

• Molecule 10 is a protein called 60S ribosomal protein L41-A.

Mol	Chain	Residues		At	\mathbf{oms}		Atoms					
10	Р	15	Total 146	C 89	N 40	O 16	S 1	0	0			

• Molecule 11 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
11	3	121	Total 2579	C 1152	N 461	0 845	Р 121	0	0

• Molecule 12 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		Α	toms			AltConf	Trace
12	4	158	Total 3353	C 1500	N 586	O 1109	Р 158	0	0

• Molecule 13 is a RNA chain called 25S ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
13	1	3143	Total 67219	C 30026	N 12110	O 21940	Р 3143	0	0

• Molecule 14 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		I	Atoms			AltConf	Trace
14	2	1737	Total 37011	C 16546	N 6549	O 12179	Р 1737	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein uS2A.

Mol	Chain	Residues		At	AltConf	Trace			
15	S0	204	Total 1598	C 1025	N 283	0 288	${S \over 2}$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein eS1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
16	S1	211	Total 1687	C 1070	N 305	O 308	$\frac{S}{4}$	0	0

• Molecule 17 is a protein called RPS2 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	S2	214	Total 1615	C 1036	N 285	0 292	$\frac{S}{2}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	S3	220	Total 1709	C 1083	N 310	0 310	S 6	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein eS6A.

Mol	Chain	Residues		Ate	AltConf	Trace			
19	S6	226	Total 1820	C 1142	N 350	O 325	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
20	S7	184	Total 1481	C 951	N 265	O 265	0	0

• Molecule 21 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	S8	188	Total 1489	C 925	N 298	0 264	${S \over 2}$	0	0

• Molecule 22 is a protein called Small ribosomal subunit protein uS4A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	S9	185	Total 1494	C 943	N 289	0 261	S 1	0	0

• Molecule 23 is a protein called Small ribosomal subunit protein uS17A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	C1	139	Total 1121	С 721	N 211	0 186	${ m S} { m 3}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
C1	147	ALA	GLY	conflict	UNP P0CX47

• Molecule 24 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	C3	150	Total 1192	C 759	N 224	O 207	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
25	C6	141	Total	C 708	N 202	0 104	0	0
			1105	108	203	194		

• Molecule 26 is a protein called ES17.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	C7	92	Total 737	C 466	N 140	O 129	${ m S} { m 2}$	0	0

• Molecule 27 is a protein called 40S ribosomal protein S19-A.

Mol	Chain	Residues		At	AltConf	Trace			
27	С9	143	Total 1112	C 694	N 208	O 208	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called Small ribosomal subunit protein eS21A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	D1	86	Total 673	C 414	N 121	0 136	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 29 is a protein called RPS22A isoform 1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	D2	129	Total 1021	C 650	N 188	0 180	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	D3	144	Total 1121	C 708	N 220	0 191	${S \over 2}$	0	0

• Molecule 31 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
31	D4	134	Total 1073	C 676	N 208	O 189	0	0

• Molecule 32 is a protein called RPS26B isoform 1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	D6	97	Total 769	C 475	N 160	0 129	${S \atop 5}$	0	0

• Molecule 33 is a protein called 40S ribosomal protein S27-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	D7	81	Total 610	C 382	N 110	0 113	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called RPS29A isoform 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
34	D9	49	Total 404	C 249	N 86	O 65	$\frac{S}{4}$	0	0

• Molecule 35 is a protein called 40S ribosomal protein S30-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
35	E0	59	Total 469	C 296	N 97	O 75	S 1	0	0

• Molecule 36 is a protein called Small ribosomal subunit protein RACK1.

Mol	Chain	Residues		At	AltConf	Trace			
36	SR	318	Total 2445	C 1546	N 419	0 472	S 8	0	0

• Molecule 37 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	L2	251	Total 1909	C 1188	N 387	O 333	S 1	0	0

• Molecule 38 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
38	L3	386	Total 3079	C 1954	N 584	O 533	S 8	0	0

• Molecule 39 is a protein called RPL4A isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	L4	359	Total 2731	C 1720	N 517	0 491	${f S}\ 3$	0	0

• Molecule 40 is a protein called RPL5 isoform 1.

Mol	Chain	Residues		Ate	AltConf	Trace			
40	L5	291	Total 2329	C 1472	N 406	O 449	${ m S} { m 2}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues		At	AltConf	Trace			
41	L6	156	Total 1239	C 800	N 222	0 216	S 1	0	0

• Molecule 42 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
42	L7	219	Total 1761	C 1138	N 320	O 302	S 1	0	0

• Molecule 43 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	L8	216	Total 1706	C 1095	N 306	O 302	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called RPL9A isoform 1.

Mol	Chain	Residues		At	AltConf	Trace			
44	L9	189	Total 1502	C 953	N 272	0 273	S 4	0	0

• Molecule 45 is a protein called RPL10 isoform 1.

Mol	Chain	Residues		At	AltConf	Trace			
45	M0	206	Total 1677	C 1066	N 317	O 289	${f S}{5}$	0	0

There are 9 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
MO	?	-	LEU	deletion	UNP A0A6A5PUZ5
M0	?	-	SER	deletion	UNP A0A6A5PUZ5
MO	?	-	CYS	deletion	UNP A0A6A5PUZ5
MO	?	-	ALA	deletion	UNP A0A6A5PUZ5
M0	?	-	GLY	deletion	UNP A0A6A5PUZ5
MO	?	-	ALA	deletion	UNP A0A6A5PUZ5

Chain	Residue	Modelled	Actual	Comment	Reference
M0	?	-	ASP	deletion	UNP A0A6A5PUZ5
M0	?	-	ARG	deletion	UNP A0A6A5PUZ5
M0	?	-	LEU	deletion	UNP A0A6A5PUZ5

Continued from previous page...

• Molecule 46 is a protein called RPL11B isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	M1	168	Total 1344	C 841	N 251	0 248	${S \over 4}$	0	0

• Molecule 47 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
47	M3	193	Total 1543	C 962	N 315	O 266	0	0

• Molecule 48 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	M4	136	Total 1053	$\begin{array}{c} \mathrm{C} \\ 675 \end{array}$	N 199	O 177	${ m S}$ 2	0	0

• Molecule 49 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
49	M5	202	Total 1711	C 1071	N 359	O 280	S 1	0	0

• Molecule 50 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	M6	197	Total 1555	C 1003	N 289	O 262	S 1	0	0

• Molecule 51 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
51	M7	174	Total	С	Ν	Ο	0	0
51	101 (114	1379	856	275	248	0	0

• Molecule 52 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	M8	185	Total 1441	C 908	N 290	0 241	${ m S} { m 2}$	0	0

• Molecule 53 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
53	M9	184	Total 1490	C 917	N 321	O 252	0	0

• Molecule 54 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
54	N0	172	Total 1445	C 930	N 267	0 244	S 4	0	0

• Molecule 55 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	N1	158	Total 1268	C 799	N 245	O 220	${S \atop 4}$	0	0

• Molecule 56 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
56	N2	98	Total 778	C 505	N 127	O 146	0	0

• Molecule 57 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	N3	136	Total 1003	C 628	N 189	0 179	${f S}7$	0	0

• Molecule 58 is a protein called RPL24A isoform 1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
58	N4	62	Total	С	Ν	Ο	S	0	0
- 58	114	02	513	330	101	81	1	0	0

• Molecule 59 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	N5	119	Total 954	C 614	N 167	0 171	${ m S} { m 2}$	0	0

• Molecule 60 is a protein called Large ribosomal subunit protein uL24A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
60	N6	126	Total 993	C 625	N 192	O 176	0	0

• Molecule 61 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
61	N7	135	Total 1092	C 710	N 202	O 180	0	0

• Molecule 62 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
62	N8	148	Total 1173	C 749	N 231	O 190	${ m S} { m 3}$	0	0

• Molecule 63 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
63	N9	54	Total 434	С 271	N 94	O 69	0	0

• Molecule 64 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	O0	97	Total 743	C 479	N 124	0 139	S 1	0	0

• Molecule 65 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	AltConf	Trace			
65	01	106	Total 865	C 550	N 165	0 149	S 1	0	0

• Molecule 66 is a protein called RPL32 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	O2	125	Total 1007	C 638	N 203	O 165	S 1	0	0

• Molecule 67 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	O3	106	Total 850	C 540	N 165	0 144	S 1	0	0

• Molecule 68 is a protein called Large ribosomal subunit protein eL34A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	O4	109	Total 861	C 533	N 175	0 149	S 4	0	0

• Molecule 69 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
69	O5	118	Total 964	C 612	N 185	0 166	S 1	0	0

• Molecule 70 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	O6	97	Total 750	C 469	N 149	0 130	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 71 is a protein called Large ribosomal subunit protein eL37A.

Mol	Chain	Residues		At	oms	Atoms					
71	07	84	Total	С	Ν	Ο	S	1	0		
11	01	04	676	411	149	111	5				

• Molecule 72 is a protein called RPL38 isoform 1.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
72	08	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 73 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
73	O9	50	Total 436	C 272	N 97	O 65	${ m S} { m 2}$	0	0

• Molecule 74 is a protein called 60S ribosomal protein L40-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
74	Q0	51	Total 409	C 253	N 85	O 66	${f S}{5}$	0	0

• Molecule 75 is a protein called Large ribosomal subunit protein eL41B.

Mol	Chain	Residues	Atoms					AltConf	Trace
75	Q1	25	Total 233	C 142	N 63	O 27	S 1	0	0

• Molecule 76 is a protein called 60S ribosomal protein L42-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
76	Q2	105	Total 847	C 534	N 170	0 138	${ m S}{ m 5}$	0	0

• Molecule 77 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
77	Q3	91	Total 694	C 429	N 138	0 121	S 6	0	0

• Molecule 78 is a protein called STM1 isoform 1.

Mol	Chain	Residues		Ato	AltConf	Trace		
78	SM	118	Total 893	C 527	N 180	O 186	0	0

• Molecule 79 is a protein called Eukaryotic translation initiation factor 5A.

Mol	Chain	Residues		At	oms			AltConf	Trace
79	eI	145	Total 1096	C 682	N 183	0 222	S 9	0	0

• Molecule 80 is a protein called Small ribosomal subunit protein eS4A.

Mol	Chain	Residues		At	oms			AltConf	Trace
80	S4	260	Total 2068	C 1316	N 389	O 360	${ m S} { m 3}$	0	0

• Molecule 81 is a protein called RPS31 isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
81	E1	35	Total 271	C 165	N 54	0 48	$\mathbf{S}_{\mathbf{A}}$	0	0

• Molecule 82 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
82	3	3	Total Mg 3 3	0
82	4	2	Total Mg 2 2	0
82	1	191	Total Mg 191 191	0
82	2	19	Total Mg 19 19	0
82	L3	1	Total Mg 1 1	0
82	Μ7	1	Total Mg 1 1	0
82	N3	1	Total Mg 1 1	0
82	O2	1	Total Mg 1 1	0
82	07	1	Total Mg 1 1	0

• Molecule 83 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
83	1	63	Total K 63 63	0
83	2	1	Total K 1 1	0
83	L2	2	Total K 2 2	0
83	L4	1	Total K 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
83	M0	1	Total K 1 1	0
83	M5	1	Total K 1 1	0
83	N9	1	Total K 1 1	0
83	O4	1	Total K 1 1	0
83	07	1	Total K 1 1	0

• Molecule 84 is 4-{(2R)-2-[(1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl]-2-hydroxyethyl}piperidi ne-2,6-dione (three-letter code: 3HE) (formula: C₁₅H₂₃NO₄) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Aton	ns		AltConf
84	1	1	Total	С	Ν	0	0
			20	15	T	4	

• Molecule 85 is SPERMIDINE (three-letter code: SPD) (formula: $C_7H_{19}N_3$).

Mol	Chain	Residues	Atoms	AltConf
85	1	1	Total C N 10 7 3	0
85	1	1	Total C N 10 7 3	0
85	1	1	Total C N 10 7 3	0

• Molecule 86 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
86	D6	1	Total Zn 1 1	0
86	D9	1	Total Zn 1 1	0
86	O4	1	Total Zn 1 1	0
86	07	1	Total Zn 1 1	0
86	Q0	1	Total Zn 1 1	0
86	Q2	1	Total Zn 1 1	0
86	Q3	1	Total Zn 1 1	0

• Molecule 87 is water.

Mol	Chain	Residues	Atoms	AltConf
87	3	12	Total O 12 12	0
87	4	40	Total O 40 40	0
87	1	1466	Total O 1466 1466	0
87	2	45	Total O 45 45	0
87	C3	2	Total O 2 2	0
87	L2	30	Total O 30 30	0
87	L3	21	Total O 21 21	0
87	L4	16	Total O 16 16	0
87	L5	3	Total O 3 3	0
87	L6	1	Total O 1 1	0
87	L7	10	Total O 10 10	0
87	M0	3	Total O 3 3	0
87	M3	3	Total O 3 3	0
87	M5	19	Total O 19 19	0
87	M6	9	Total O 9 9	0
87	Μ7	13	TotalO1313	0
87	M8	10	Total O 10 10	0
87	M9	5	Total O 5 5	0
87	N0	3	Total O 3 3	0
87	N1	6	TotalO66	0
87	N3	4	TotalO44	0
87	N4	1	Total O 1 1	0

Mol	Chain	Residues	Atoms	AltConf
87	N5	4	Total O 4 4	0
87	N8	15	Total O 15 15	0
87	N9	5	Total O 5 5	0
87	01	4	Total O 4 4	0
87	O2	20	TotalO2020	0
87	O3	5	Total O 5 5	0
87	04	6	Total O 6 6	0
87	O6	1	Total O 1 1	0
87	07	11	Total O 11 11	0
87	08	1	Total O 1 1	0
87	O9	1	Total O 1 1	0
87	Q0	1	Total O 1 1	0
87	Q2	9	Total O 9 9	0
87	Q3	4	Total O 4 4	0
87	eI	1	Total O 1 1	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 60S ribosomal protein L1-A

91% Chain C0: 84% 14%

******		**********	* * * * **
915 916 917 918 119 119 122 123 123 123 123 123 126 126 126 126 123 126	K30 V31 K32 K32 R33 R33 R35 S39 S38 S39 S39 V37 V37 S39 S39 V37 S39 K44	A44 A45 645 946 947 148 148 148 150 153 153 155 155 155 155 155	K61 170 170 174 174 188 188 188 188 188 188 188 188 188
K88 R89 191 191 192 892 894 895 895 996 998 998 998 8100 K101	1103 1104 1104 1105 11106 1110 1110 11110 11111 11111 11111	V11/ V118 S120	
• Molecule 8: 40S ribosoma	al protein S25		
Chain D5:	99% 89%	11%	
A36 937 1438 A39 A39 A39 A39 A43 C44 C42 C44 C44 C44 C44 C44 C44 C44 C44	L51 K52 E53 E53 F55 F55 F55 F55 F55 F55 F55 F55 F55 F	V665 D67 R68 R68 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	L80 R81 H83 H82 F84 K85 E86 C87 F85 F85 F85 F85 F85 F85 F85 F85 F85 F85
896 K97 Q98 A99 T100 H103 A104 A104 A104			
• Molecule 9: RPS28A isof	orm 1		
Chain D8:	86% 95%		
THR P6 V7 V7 L9 A10 A10 A10 V12 V12 V12 V15 V15 C116 C17 R18 R18 R18 R18	s21 G24 Q27 V28 V28 V30 E31 F32 E34 E34 E34 C33 C34 C34 C34 C34 C34 C34 C34 C34 C	837 138 140 141 142 143 143 143 144 144 150 152 153	L64 V55 L56 M57 E58 S59 E60 R61 R64 R64 R64 R65 R65 R65 R65 R65
• Molecule 10: 60S ribosom	nal protein L41-A		
Chain P:	100%		
There are no outlier residue	es recorded for this chain		
• Molecule 11: 5S ribosoma	al RNA		
Chain 3:	80%	19% •	
G1 G5 G5 G6 G6 G6 G6 G7 A17 A17 A17 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C1	U62 665 675 677 691 691 691 6101 6101 6101 6102 6102	U111 6112 U121	
• Molecule 12: 5.8S ribosor	nal RNA		
Chain 4:	74%	22% ••	
A1 616 120 120 123 123 123 123 123 123 123 123 133 123 133 13	A59 A66 A66 A66 A66 A66 A86 U82 C33 C33 C33 C33 C33 C33 C33 C33 C33 C3	(103 A104 A106 (106 (106 (110 0111 0111 01112 01112 01112 01112 01122 0112 0125	60 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
U143 0144 0152 0152 0158 0158 0158			
• Molecule 13: 25S ribosom	nal RNA		

SER ALA GLN

• Molecule 20: 40S ribosomal protein S7-A

Chain D2:		95%	5% •
12 V6 V25 134 422 442 142 145 165	E87 M111 N117		
• Molecule 30:	40S ribosomal protein	1 S23-A	
Chain D3:		93%	6% ••
G2 R7 L9 841 P42 P64	R69 D97 D97 5331 \$131 \$131 \$133 K137	K140 P143 S145 S145	
• Molecule 31:	40S ribosomal protein	1 S24-A	
Chain D4:	60%	96%	
••••	• •• • • • • ••	•• • •	····· · · · · · · · · ·
S2 D3 A4 V5 T6 T7 T9 R10	K11 S14 N15 N15 K21 K21 L28 K21 L28 K21 L28 H29	R30 R32 R33 R33 R33 R34 R34 R37 R37 R37 R37 R37 R37 R37 R37 R37 R37	K49 K51 K55 K55 K55 K55 K55 K56 K61 K61 K61 K68 K68 K68 K68 K68 K76
•• •• ••	• • • • • • • • • • • • •	•• • ••• ••••	••••
N77 878 V79 880 880 881 882 K83 K83 K84 F85	E86 R90 794 794 196 196 196 196 199 199 199 199 199 199	A100 8100 8100 8110 8111 8112 8122 8122 8	R135 N135 D139 D131
• Molecule 32:	RPS26B isoform 1		
Chain D6:	20%	88%	8% •
P2 R5 K12 K12 K13 F44 V45 E46	A49 A49 V50 D52 S54 E58 E58 Y59 P60	Y62 A63 F65 F65 F65 F65 R82 R82 R82 R82 R82 R82 P98	
• Molecule 33:	40S ribosomal protein	n S27-A	
Chain D7:	48%	100%	
V2 A13 A13 A13 A15 A16 P17 D34	V35 C37 P38 C37 P38 C39 C40 C40 C40 L41 L41 L41 L43 T44 T45 T45	V54 155 555 555 555 558 558 558 558 558 569 162 163 162 163 163 163 163 163 163 163 163 163 163	G 76 578 878 880 880 K82 K82
• Molecule 34:	RPS29A isoform 1		
Chain D9:	17%	87%	6% 8%
GLU ASN TRP TRP FS F3 R12 R12 R13	R44 R44 R49 R51 R52 R52 R54 R55 R55 R55		
• Molecule 35:	40S ribosomal protein	n S30-A	
Chain E0:	50%	92%	7% •
		WORLDWIDE PROTEIN DATA BANK	

• Molecule 45: RPL10 isoform 1		
Chain M0:	91%	7%•
A2 R3 R3 R4 R4 R1 P2 P2 P2 P2 P2 P2 P2 P2 R2 R1 C1 R1 C1 R1 C1 R1 C2 R1 C2 R1 C2 R1 C2 R1 C2 R2 R2 R2 R2 R2 R2 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3	11 40 11 47 11 46 11 76 11 76 11 76 11 76 11 76 11 76 11 76 11 76 11 76	A219
• Molecule 46: RPL11B isoform 1		
Chain M1:	93%	5%•
Q6 \$22 \$22 \$22 \$22 \$140 R55 \$ R55 \$ R66 \$ R94 \$ C1113 \$ C1113 \$	1114 X115 X115 P118 R143 X155 K143 A165 A165 A165 A165 D170 D170	
• Molecule 47: 60S ribosomal protein L	13-A	
Chain M3:	91%	9% •
A2 L10 L10 R35 R35 R42 R42 P48 R49 P48 R49 R49 R49 R49 R10 193 R104 R104	R130 K131 A132 E134 A135 E134 A135 A135 A135 A135 A135 A151 A151 A151	R188 E189 K190 A191 E192 A193 E194
• Molecule 48: 60S ribosomal protein L	14-A	
Chain M4:	90%	8% ••
T3 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 18 18 18 18 18 18 18 19 12 12 12 12 13 138 138		
• Molecule 49: Ribosomal protein L15		
Chain M5:	93%	
C2 L10 L10 R20 R71 R73 R73 R73 R73 R96 R96 R187 R187 R187 R187 R187 R187 R187 R187	<mark>H2003</mark>	
• Molecule 50: 60S ribosomal protein L	16-A	
Chain M6:	92%	6% ••
V3 K12 K12 K12 K12 K37 K49 K69 K69 K11 K117 K117 K112 K126 K126 V126 V126	N172 N182	
• Molecule 51: 60S ribosomal protein L	17-A	
Chain M7:	90%	• 5%

S2 G3 M4 A6 A6 C25 A26 A26 D27	R45 R45 L69 L69 R80 R87 R87 R86 R87 R87 R87 R87 R87 R87 R87 R87 R87 R87	
• Molecule 58: R	PL24A isoform 1	
Chain N4:	60% ·	37%
M1 128 128 1128 1115 1115 1115 1118 1118	VALA ALA ALA ALA ARA ARA SER SER ARA ALA ALA ARA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	SEN LYS PRO
• Molecule 59: 60	OS ribosomal protein L25	
Chain N5:	90%	7% •
LYS ALA ALA 124 124 137 137 137 137 137 137	V86 E104 E104 1135 R125 R135 R136 1142	
• Molecule 60: La	arge ribosomal subunit protein uL24A	
Chain N6:	91%	8%
A2 R12 R52 R52 V56 V59 V59 V59	V73 V74 K84 B88 L106 L126 E127	
• Molecule 61: 60	OS ribosomal protein L27-A	
Chain N7:	91%	8%
A2 K3 V10 V14 R15 G16 B17 E31	K34 K66 K60 K60 K60 K60 E87 C98 E90 E90 E90 C123 A124 A124 F136	
• Molecule 62: 60	OS ribosomal protein L28	
Chain N8:	92%	7%
82 83 83 83 83 83 83 83 83 83 83 83 84 7 84 7	A4 (175 176 176 178 178 178 188 188 188 188 198 198 198 19	
• Molecule 63: 60	OS ribosomal protein L29	
Chain N9:	93%	•
A2 K25 L54 A53 A15 A1A		

• Molecule 64: 60S ribosomal protein L30

Chain O0:	88%	11% •
	2000 2000 2000 2000 2000 2000 2000 200	
• Molecule 65: 60S riboso	omal protein L31-A	
Chain O1:	91%	6% • •
LEU K5 66 86 R28 R28 R28 R28 R28 R28 R29 R79	ked E81 E82 E83 A85 A85 A85 A85 CU CU A85 A85 A85 A85 A85 A85 A85 A85 A85 A85	
• Molecule 66: RPL32 iso	oform 1	
Chain O2:	91%	6% •••
83 14 14 14 14 145 145 145 145 145 145 146 116 116 116 116	LLUC LLUC	
• Molecule 67: 60S ribose	omal protein L33-A	
Chain O3:	93%	6% ·
A2 L14 K31 K31 R60 M67 M67 M67 R60 M67 R60 R86 R86		
• Molecule 68: Large ribe	osomal subunit protein eL34A	
Chain O4:	90%	7% ••
P12 R41 V65 R74 R74 N83 N83 N83	K106 E107 G108 E110 ALA ALA	
• Molecule 69: 60S riboso	omal protein L35-A	
Chain O5:	92%	
A2 R10 P39 P39 P39 R47 R8 R8 R90 R90 R15 R90 R15	ALA ALA	
• Molecule 70: 60S ribose	omal protein L36-A	
Chain O6:	95%	
U3 121 R62 R62 R98 HIS		

• Molecule 71: Large ribosomal subunit protein eL37A Chain O7: 79% 13% • Molecule 72: RPL38 isoform 1 17% Chain O8: 94% 5% • N35 K35 A34 G35 • Molecule 73: 60S ribosomal protein L39 Chain O9: 86% 12% • Molecule 74: 60S ribosomal protein L40-A Chain Q0: 92% • • ٠ • Molecule 75: Large ribosomal subunit protein eL41B Chain Q1: 100% • Molecule 76: 60S ribosomal protein L42-A Chain Q2: 90% 9% • Molecule 77: 60S ribosomal protein L43-A Chain Q3: 97%

 \bullet Molecule 79: Eukaryotic translation initiation factor 5A

• Molecule 80: Small ribosomal subunit protein eS4A

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	127945	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	32	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	GATAN K2 QUANTUM $(4k \ge 4k)$	Depositor
Maximum map value	0.083	Depositor
Minimum map value	-0.016	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.0143	Depositor
Map size (Å)	375.84, 375.84, 375.84	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.783, 0.783, 0.783	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 3HE, SPD, MG, 5CT, ZN, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	В	0.35	0/1737	0.74	0/2332	
2	S5	0.33	0/1629	0.68	0/2202	
3	C0	0.35	0/838	0.74	0/1133	
4	C4	0.38	0/944	0.77	1/1268~(0.1%)	
5	C5	0.37	0/931	0.77	2/1250~(0.2%)	
6	C8	0.33	0/1211	0.74	1/1628~(0.1%)	
7	D0	0.31	0/865	0.69	0/1169	
8	D5	0.35	0/571	0.75	0/768	
9	D8	0.34	0/492	0.80	0/659	
10	Р	0.35	0/147	1.04	0/189	
11	3	0.60	0/2883	1.28	15/4491~(0.3%)	
12	4	0.64	0/3746	1.33	20/5832~(0.3%)	
13	1	0.69	0/75240	1.39	602/117303~(0.5%)	
14	2	0.59	0/41395	1.24	175/64501~(0.3%)	
15	S0	0.35	0/1639	0.80	0/2241	
16	S1	0.35	0/1712	0.83	1/2304~(0.0%)	
17	S2	0.35	0/1645	0.77	0/2236	
18	S3	0.35	0/1733	0.82	1/2332~(0.0%)	
19	S6	0.35	0/1844	0.80	0/2464	
20	S7	0.33	0/1506	0.76	1/2028~(0.0%)	
21	S8	0.36	0/1514	0.84	0/2021	
22	S9	0.34	0/1519	0.81	1/2035~(0.0%)	
23	C1	0.37	0/1146	0.79	0/1544	
24	C3	0.34	0/1215	0.75	0/1638	
25	C6	0.36	0/1125	0.81	0/1510	
26	C7	0.36	0/744	0.76	0/995	
27	C9	0.36	0/1130	0.74	0/1517	
28	D1	0.35	0/682	0.80	0/921	
29	D2	0.34	0/1038	0.78	2/1395~(0.1%)	
30	D3	0.37	$0/1\overline{139}$	0.92	4/1518(0.3%)	
31	D4	0.34	0/1087	0.80	0/1449	
32	D6	0.37	0/782	0.91	1/1047~(0.1%)	

Mol Chain		Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	D7	0.34	0/620	0.73	0/838	
34	D9	0.38	0/412	0.86	0/544	
35	E0	0.35	0/477	0.86	2/635~(0.3%)	
36	SR	0.34	0/2498	0.65	0/3398	
37	L2	0.49	0/1943	1.02	8/2610~(0.3%)	
38	L3	0.48	0/3150	0.97	4/4235~(0.1%)	
39	L4	0.45	0/2783	0.91	8/3767~(0.2%)	
40	L5	0.36	0/2377	0.79	1/3206~(0.0%)	
41	L6	0.37	0/1260	0.81	2/1694~(0.1%)	
42	L7	0.44	0/1798	0.85	2/2420~(0.1%)	
43	L8	0.36	0/1737	0.80	2/2343~(0.1%)	
44	L9	0.36	0/1523	0.84	1/2051~(0.0%)	
45	M0	0.41	0/1713	0.91	2/2297~(0.1%)	
46	M1	0.36	0/1365	0.85	1/1831~(0.1%)	
47	M3	0.44	0/1568	0.94	3/2106~(0.1%)	
48	M4	0.36	0/1068	0.84	1/1438~(0.1%)	
49	M5	0.52	0/1748	1.08	8/2343~(0.3%)	
50	M6	0.49	0/1585	1.05	9/2128~(0.4%)	
51	M7	0.51	0/1401	1.01	4/1882~(0.2%)	
52	M8	0.44	0/1465	1.03	5/1965~(0.3%)	
53	M9	0.45	0/1507	0.90	5/2009~(0.2%)	
54	N0	0.43	0/1481	0.91	3/1990~(0.2%)	
55	N1	0.47	0/1292	0.88	0/1732	
56	N2	0.35	0/794	0.79	0/1076	
57	N3	0.47	0/1018	0.98	4/1369~(0.3%)	
58	N4	0.44	0/525	0.80	0/696	
59	N5	0.40	0/969	0.89	2/1307~(0.2%)	
60	N6	0.43	0/1004	0.89	2/1341~(0.1%)	
61	N7	0.36	0/1118	0.85	2/1497~(0.1%)	
62	N8	0.51	0/1204	0.94	4/1612~(0.2%)	
63	N9	0.43	0/445	0.98	0/593	
64	O0	0.37	0/751	0.77	0/1008	
65	01	0.45	0/879	0.95	2/1179~(0.2%)	
66	O2	0.49	0/1028	1.02	4/1376~(0.3%)	
67	O3	0.47	0/868	0.85	1/1168~(0.1%)	
68	04	0.47	0/871	0.96	3/1164~(0.3%)	
69	O5	0.38	0/973	0.95	4/1294~(0.3%)	
70	O6	0.38	0/756	0.91	0/1005	
71	07	0.57	0/691	1.28	$8/915\ \overline{(0.9\%)}$	
72	08	0.37	0/618	0.78	0/826	
73	09	0.49	0/443	1.07	$2/588~(0.\overline{3\%})$	
74	Q0	0.39	0/415	0.90	2/551~(0.4%)	
75	Q1	0.39	0/234	1.04	0/300	

Mal	Chain	Bond lengths		Bond angles	
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
76	Q2	0.41	0/860	0.99	2/1136~(0.2%)
77	Q3	0.45	0/701	0.88	0/934
78	SM	0.35	0/903	0.75	0/1210
79	eI	0.36	0/1095	0.79	0/1473
80	S4	0.34	0/2109	0.79	0/2839
81	E1	0.39	0/276	0.74	1/368~(0.3%)
All	All	0.56	0/214148	1.18	941/314207~(0.3%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	2
2	S5	0	2
4	C4	0	3
6	C8	0	2
8	D5	0	1
9	D8	0	1
13	1	0	9
15	S0	0	1
16	S1	0	1
17	S2	0	1
20	S7	0	1
21	S8	0	2
22	S9	0	1
23	C1	0	3
24	C3	0	1
25	C6	0	2
30	D3	0	2
32	D6	0	2
34	D9	0	1
36	SR	0	3
37	L2	0	5
38	L3	0	3
39	L4	0	5
40	L5	0	3
41	L6	0	5
42	L7	0	3
43	L8	0	1
44	L9	0	4

Mol	Chain	#Chirality outliers	#Planarity outliers
45	M0	0	2
47	M3	0	6
48	M4	0	1
49	M5	0	7
50	M6	0	6
51	M7	0	3
52	M8	0	4
53	M9	0	3
54	N0	0	5
55	N1	0	2
57	N3	0	3
58	N4	0	1
59	N5	0	2
60	N6	0	2
61	N7	0	2
62	N8	0	3
65	01	0	2
66	O2	0	4
67	O3	0	2
69	O5	0	3
71	07	0	4
73	O9	0	1
76	Q2	0	1
80	S4	0	2
All	All	0	141

There are no bond length outliers.

The worst 5 of 941 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	1	2403	G	O5'-P-OP2	-23.53	82.47	110.70
13	1	806	A	O5'-P-OP1	-19.93	86.78	110.70
13	1	1639	С	O5'-P-OP2	-19.57	87.22	110.70
13	1	2373	А	O5'-P-OP1	-17.61	89.57	110.70
13	1	1117	G	O5'-P-OP1	-17.14	90.13	110.70

There are no chirality outliers.

5 of 141 planarity outliers are listed below:

Mol	Chain	Res	Type	Group	
1	В	117	ILE	Peptide	

J I J J J J J J J						
Mol	Chain	\mathbf{Res}	Type	Group		
1	В	60	ARG	Sidechain		
4	C4	114	ARG	Sidechain		
2	S5	225	ARG	Sidechain		
2	S5	76	ARG	Sidechain		

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	1710	0	1799	22	0
2	S5	1609	0	1675	2	0
3	C0	818	0	806	10	0
4	C4	933	0	968	12	0
5	C5	912	0	946	6	0
6	C8	1192	0	1222	7	0
7	D0	855	0	917	6	0
8	D5	563	0	603	4	0
9	D8	490	0	529	0	0
10	Р	146	0	174	0	0
11	3	2579	0	1303	1	0
12	4	3353	0	1695	7	0
13	1	67219	0	33762	72	0
14	2	37011	0	18622	55	0
15	S0	1598	0	1608	2	0
16	S1	1687	0	1763	4	0
17	S2	1615	0	1705	3	0
18	S3	1709	0	1792	2	0
19	S6	1820	0	1918	5	0
20	S7	1481	0	1572	0	0
21	S8	1489	0	1525	3	0
22	S9	1494	0	1573	1	0
23	C1	1121	0	1188	2	0
24	C3	1192	0	1255	2	0
25	C6	1105	0	1166	2	0
26	C7	737	0	802	1	0
27	C9	1112	0	1124	1	0
28	D1	673	0	659	2	0
29	D2	1021	0	1060	3	0

Continuea from previous page						
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
30	D3	1121	0	1196	3	0
31	D4	1073	0	1132	0	0
32	D6	769	0	814	6	0
33	D7	610	0	633	0	0
34	D9	404	0	397	1	0
35	E0	469	0	520	0	0
36	SR	2445	0	2401	2	0
37	L2	1909	0	1979	8	0
38	L3	3079	0	3157	15	0
39	L4	2731	0	2842	13	0
40	L5	2329	0	2279	6	0
41	L6	1239	0	1326	5	0
42	L7	1761	0	1843	1	0
43	L8	1706	0	1802	5	0
44	L9	1502	0	1572	5	0
45	M0	1677	0	1715	7	0
46	M1	1344	0	1370	2	0
47	M3	1543	0	1608	5	0
48	M4	1053	0	1149	4	0
49	M5	1711	0	1765	6	0
50	M6	1555	0	1659	2	0
51	M7	1379	0	1410	3	0
52	M8	1441	0	1543	11	0
53	M9	1490	0	1589	1	0
54	N0	1445	0	1487	3	0
55	N1	1268	0	1312	3	0
56	N2	778	0	791	0	0
57	N3	1003	0	1048	4	0
58	N4	513	0	540	1	0
59	N5	954	0	1018	3	0
60	N6	993	0	1081	1	0
61	N7	1092	0	1155	3	0
62	N8	1173	0	1215	3	0
63	N9	434	0	454	0	0
64	O0	743	0	797	4	0
65	01	865	0	917	2	0
66	O2	1007	0	1074	2	0
67	O3	850	0	880	2	0
68	04	861	0	918	4	0
69	O5	964	0	1073	3	0
70	O6	750	0	829	0	0
71	07	676	0	678	8	0

	nuea fron	<i>i previous</i>		TT (111)		a al l
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
72	08	612	0	682	6	0
73	09	436	0	475	4	0
74	Q0	409	0	444	0	0
75	Q1	233	0	284	0	0
76	Q2	847	0	914	3	0
77	Q3	694	0	734	2	0
78	SM	893	0	895	0	0
79	eI	1096	0	1094	0	0
80	S4	2068	0	2154	2	0
81	E1	271	0	263	2	0
82	1	191	0	0	0	0
82	2	19	0	0	0	0
82	3	3	0	0	0	0
82	4	2	0	0	0	0
82	L3	1	0	0	0	0
82	M7	1	0	0	0	0
82	N3	1	0	0	0	0
82	O2	1	0	0	0	0
82	07	1	0	0	0	0
83	1	63	0	0	0	0
83	2	1	0	0	0	0
83	L2	2	0	0	0	0
83	L4	1	0	0	0	0
83	MO	1	0	0	0	0
83	M5	1	0	0	0	0
83	N9	1	0	0	0	0
83	04	1	0	0	0	0
83	07	1	0	0	0	0
84	1	20	0	23	0	0
85	1	30	0	57	0	0
86	D6	1	0	0	0	0
86	D9	1	0	0	0	0
86	04	1	0	0	0	0
86	07	1	0	0	0	0
86	Q0	1	0	0	0	0
86	02	1	0	0	0	0
86	Q3	1	0	0	0	0
87	1	1466	0	0	0	0
87	2	45	0	0	0	0
87	3	12	0	0	0	0
87	4	40	0	0	1	0
87	C3	2	0	0	0	0
	00		0			U U

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
87	L2	30	0	0	0	0
87	L3	21	0	0	0	0
87	L4	16	0	0	0	0
87	L5	3	0	0	0	0
87	L6	1	0	0	0	0
87	L7	10	0	0	0	0
87	M0	3	0	0	0	0
87	M3	3	0	0	0	0
87	M5	19	0	0	0	0
87	M6	9	0	0	0	0
87	M7	13	0	0	0	0
87	M8	10	0	0	0	0
87	M9	5	0	0	0	0
87	NO	3	0	0	0	0
87	N1	6	0	0	0	0
87	N3	4	0	0	0	0
87	N4	1	0	0	0	0
87	N5	4	0	0	0	0
87	N8	15	0	0	0	0
87	N9	5	0	0	0	0
87	01	4	0	0	0	0
87	O2	20	0	0	0	0
87	O3	5	0	0	0	0
87	04	6	0	0	0	0
87	O6	1	0	0	0	0
87	07	11	0	0	0	0
87	08	1	0	0	0	0
87	O9	1	0	0	0	0
87	Q0	1	0	0	0	0
87	Q2	9	0	0	1	0
87	Q3	4	0	0	0	0
87	eI	1	0	0	0	0
All	All	201671	0	148718	320	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

The worst 5 of 320 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-1 Atom-2		Clash overlap (Å)
1:B:87:VAL:O	1:B:89:ASP:N	1.88	1.06

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
13:1:1639:C:OP2	68:O4:74:ARG:NH2	1.99	0.94	
52:M8:71:LEU:HD13	52:M8:99:THR:HG21	1.48	0.93	
4:C4:39:ILE:HD13	4:C4:76:ILE:HD11	1.60	0.83	
1:B:76:ARG:HH22	1:B:140:HIS:HA	1.49	0.78	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	В	214/217~(99%)	195 (91%)	14 (6%)	5 (2%)	6	7
2	S5	204/206~(99%)	193~(95%)	10 (5%)	1 (0%)	29	41
3	C0	94/96~(98%)	85 (90%)	5 (5%)	4 (4%)	2	2
4	C4	124/127~(98%)	123 (99%)	1 (1%)	0	100	100
5	C5	113/124~(91%)	110 (97%)	2 (2%)	1 (1%)	17	25
6	C8	143/145~(99%)	138 (96%)	4 (3%)	1 (1%)	22	32
7	D0	105/107~(98%)	104 (99%)	1 (1%)	0	100	100
8	D5	68/70~(97%)	65~(96%)	1 (2%)	2(3%)	4	4
9	D8	60/63~(95%)	57~(95%)	2 (3%)	1 (2%)	9	11
10	Р	13/15~(87%)	13 (100%)	0	0	100	100
15	S0	202/251~(80%)	179 (89%)	19 (9%)	4 (2%)	7	9
16	S1	209/214~(98%)	185 (88%)	20 (10%)	4 (2%)	8	10
17	S2	212/217~(98%)	196 (92%)	13 (6%)	3 (1%)	11	15
18	S3	218/223~(98%)	195 (89%)	19 (9%)	4 (2%)	8	10
19	S6	224/226~(99%)	198 (88%)	24 (11%)	2 (1%)	17	25
20	S7	182/184~(99%)	155 (85%)	23 (13%)	4 (2%)	6	7

<i>a</i> 1	C		
Continued	trom	previous	page
0 0 1 0 0 0 0 0 0 0 0		p. 0000000	p @ g e

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
21	S8	184/188~(98%)	168 (91%)	14 (8%)	2 (1%)	14	20
22	S9	183/185~(99%)	164 (90%)	17 (9%)	2(1%)	14	20
23	C1	135/155~(87%)	122 (90%)	10 (7%)	3~(2%)	6	7
24	C3	148/150~(99%)	136~(92%)	12 (8%)	0	100	100
25	C6	139/141~(99%)	115 (83%)	19 (14%)	5 (4%)	3	3
26	C7	88/120~(73%)	79 (90%)	8 (9%)	1 (1%)	14	20
27	C9	141/143~(99%)	131 (93%)	8 (6%)	2 (1%)	11	15
28	D1	84/87~(97%)	72 (86%)	10 (12%)	2 (2%)	6	6
29	D2	127/129~(98%)	123 (97%)	4 (3%)	0	100	100
30	D3	142/144~(99%)	132 (93%)	9 (6%)	1 (1%)	22	32
31	D4	132/134~(98%)	121 (92%)	9 (7%)	2 (2%)	10	14
32	D6	95/97~(98%)	81 (85%)	9 (10%)	5 (5%)	2	1
33	D7	79/81~(98%)	74 (94%)	5 (6%)	0	100	100
34	D9	47/53~(89%)	41 (87%)	5 (11%)	1 (2%)	7	8
35	E0	57/60~(95%)	50 (88%)	5 (9%)	2 (4%)	3	3
36	SR	316/318~(99%)	304 (96%)	11 (4%)	1 (0%)	41	55
37	L2	249/252~(99%)	238 (96%)	11 (4%)	0	100	100
38	L3	384/386~(100%)	368 (96%)	15 (4%)	1 (0%)	41	55
39	L4	357/361~(99%)	335 (94%)	18 (5%)	4 (1%)	14	20
40	L5	288/295~(98%)	275 (96%)	11 (4%)	2 (1%)	22	32
41	L6	152/156~(97%)	144 (95%)	7 (5%)	1 (1%)	22	32
42	L7	217/222~(98%)	214 (99%)	2 (1%)	1 (0%)	29	41
43	L8	212/233~(91%)	203 (96%)	9 (4%)	0	100	100
44	L9	187/189~(99%)	180 (96%)	6 (3%)	1 (0%)	29	41
45	MO	202/209~(97%)	193 (96%)	9 (4%)	0	100	100
46	M1	166/168~(99%)	152 (92%)	8 (5%)	6 (4%)	3	3
47	M3	$\overline{191/193}~(99\%)$	180 (94%)	9 (5%)	2 (1%)	15	23
48	M4	134/136~(98%)	127 (95%)	3 (2%)	4 (3%)	4	3
49	M5	$\overline{200/202}~(99\%)$	195 (98%)	5 (2%)	0	100	100
50	M6	195/197~(99%)	193 (99%)	2 (1%)	0	100	100
51	M7	$170/18\overline{3}\ (93\%)$	163 (96%)	7 (4%)	0	100	100

$\alpha + 1$	C		
Continued	trom	nremous	naae
Contentaca	1.0110	p1000000	pagom

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
52	M8	183/185~(99%)	175~(96%)	7 (4%)	1 (0%)	29	41
53	M9	182/188~(97%)	180 (99%)	1 (0%)	1 (0%)	29	41
54	N0	170/172~(99%)	165~(97%)	4 (2%)	1 (1%)	25	36
55	N1	156/159~(98%)	149 (96%)	6 (4%)	1 (1%)	25	36
56	N2	96/100~(96%)	86 (90%)	9 (9%)	1 (1%)	15	23
57	N3	134/136~(98%)	129 (96%)	5 (4%)	0	100	100
58	N4	60/98~(61%)	59 (98%)	1 (2%)	0	100	100
59	N5	117/121~(97%)	113 (97%)	4 (3%)	0	100	100
60	N6	124/126~(98%)	117 (94%)	5 (4%)	2 (2%)	9	13
61	N7	133/135~(98%)	129 (97%)	3 (2%)	1 (1%)	19	29
62	N8	146/148~(99%)	134 (92%)	9 (6%)	3 (2%)	7	8
63	N9	52/56~(93%)	48 (92%)	2 (4%)	2 (4%)	3	2
64	O0	95/97~(98%)	92 (97%)	2 (2%)	1 (1%)	14	20
65	01	104/109~(95%)	99~(95%)	4 (4%)	1 (1%)	15	23
66	O2	123/127~(97%)	117 (95%)	6 (5%)	0	100	100
67	O3	104/106~(98%)	103 (99%)	1 (1%)	0	100	100
68	O4	107/111~(96%)	104 (97%)	2 (2%)	1 (1%)	17	25
69	O5	116/119~(98%)	114 (98%)	1 (1%)	1 (1%)	17	25
70	O6	95/99~(96%)	89 (94%)	4 (4%)	2 (2%)	7	8
71	07	83/86~(96%)	77~(93%)	6 (7%)	0	100	100
72	08	75/77~(97%)	73~(97%)	2 (3%)	0	100	100
73	O9	48/50~(96%)	48 (100%)	0	0	100	100
74	Q0	49/52~(94%)	47 (96%)	0	2 (4%)	3	2
75	Q1	23/25~(92%)	23 (100%)	0	0	100	100
76	Q2	103/105~(98%)	97 (94%)	6 (6%)	0	100	100
77	Q3	89/91~(98%)	83 (93%)	5 (6%)	1 (1%)	14	20
78	SM	116/118 (98%)	102 (88%)	12 (10%)	2 (2%)	9	11
79	eI	142/145~(98%)	127 (89%)	13 (9%)	2 (1%)	11	15
80	S4	258/260~(99%)	240 (93%)	16 (6%)	2 (1%)	19	29
81	E1	33/71 (46%)	33 (100%)	0	0	100	100
All	All	11102/11524~(96%)	10416 (94%)	571 (5%)	115 (1%)	20	23

5 of 115 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	В	88	ASP
1	В	118	LYS
3	C0	85	HIS
16	S1	26	ARG
16	S1	50	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	В	197/198~(100%)	193 (98%)	4 (2%)	55	74
2	S5	173/173~(100%)	172 (99%)	1 (1%)	86	94
3	C0	89/89~(100%)	88 (99%)	1 (1%)	73	87
4	C4	95/96~(99%)	94 (99%)	1 (1%)	73	87
5	C5	95/104~(91%)	95~(100%)	0	100	100
6	C8	128/128~(100%)	127 (99%)	1 (1%)	81	91
7	D0	100/100~(100%)	100 (100%)	0	100	100
8	D5	61/61~(100%)	61 (100%)	0	100	100
9	D8	55/56~(98%)	55 (100%)	0	100	100
10	Р	14/14~(100%)	14 (100%)	0	100	100
15	$\mathbf{S0}$	171/209~(82%)	168~(98%)	3(2%)	59	76
16	S1	189/191~(99%)	186 (98%)	3(2%)	62	79
17	S2	174/176~(99%)	172 (99%)	2(1%)	73	87
18	S3	180/182~(99%)	172 (96%)	8 (4%)	28	45
19	S6	193/193~(100%)	188 (97%)	5(3%)	46	66
20	S7	165/165~(100%)	162 (98%)	3(2%)	59	76
21	S8	150/150~(100%)	148 (99%)	2 (1%)	69	84
22	S9	158/158~(100%)	156 (99%)	2 (1%)	69	84
23	C1	125/136~(92%)	120 (96%)	5 (4%)	31	49

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
24	C3	127/127~(100%)	124 (98%)	3~(2%)	49	68
25	C6	117/117~(100%)	113~(97%)	4 (3%)	37	56
26	C7	83/109~(76%)	80 (96%)	3~(4%)	35	54
27	C9	115/115~(100%)	109~(95%)	6~(5%)	23	38
28	D1	73/74~(99%)	72~(99%)	1 (1%)	67	82
29	D2	110/110 (100%)	109 (99%)	1 (1%)	78	90
30	D3	119/119~(100%)	114 (96%)	5(4%)	30	47
31	D4	112/112~(100%)	109 (97%)	3(3%)	44	65
32	D6	83/83~(100%)	82 (99%)	1 (1%)	71	85
33	D7	70/70~(100%)	70 (100%)	0	100	100
34	D9	43/47~(92%)	43 (100%)	0	100	100
35	E0	50/51~(98%)	49 (98%)	1 (2%)	55	74
36	SR	261/261~(100%)	260 (100%)	1 (0%)	91	96
37	L2	193/194~(100%)	190 (98%)	3(2%)	62	79
38	L3	322/322~(100%)	307~(95%)	15~(5%)	26	42
39	L4	286/288~(99%)	280~(98%)	6(2%)	53	72
40	L5	239/243~(98%)	232~(97%)	7 (3%)	42	62
41	L6	134/134~(100%)	131 (98%)	3(2%)	52	71
42	L7	184/186~(99%)	182 (99%)	2(1%)	73	87
43	L8	181/191~(95%)	177~(98%)	4 (2%)	52	71
44	L9	169/169~(100%)	165~(98%)	4(2%)	49	68
45	M0	176/179~(98%)	171 (97%)	5(3%)	43	63
46	M1	146/146~(100%)	143~(98%)	3~(2%)	53	72
47	M3	154/154~(100%)	151 (98%)	3~(2%)	57	75
48	M4	107/107~(100%)	103~(96%)	4 (4%)	34	53
49	M5	174/174~(100%)	170 (98%)	4 (2%)	50	70
50	M6	$160/1\overline{60}~(100\%)$	155~(97%)	5(3%)	40	60
51	M7	140/145~(97%)	137 (98%)	3 (2%)	53	72
52	M8	$1\overline{50/150}~(100\%)$	147 (98%)	3 (2%)	55	74
53	M9	$\overline{150/153}~(98\%)$	144 (96%)	6 (4%)	31	49
54	NO	$156/1\overline{56}\ (100\%)$	152 (97%)	4 (3%)	46	66

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
55	N1	135/136~(99%)	132~(98%)	3~(2%)	52	71
56	N2	85/87~(98%)	85 (100%)	0	100	100
57	N3	104/104~(100%)	101~(97%)	3~(3%)	42	62
58	N4	54/86~(63%)	54 (100%)	0	100	100
59	N5	104/105~(99%)	99~(95%)	5(5%)	25	41
60	N6	109/109~(100%)	105 (96%)	4 (4%)	34	53
61	N7	115/115~(100%)	111 (96%)	4 (4%)	36	55
62	N8	118/118 (100%)	116 (98%)	2(2%)	60	78
63	N9	44/44 (100%)	44 (100%)	0	100	100
64	O0	81/81 (100%)	77 (95%)	4 (5%)	25	40
65	O1	93/96~(97%)	92 (99%)	1 (1%)	73	87
66	O2	108/109~(99%)	105 (97%)	3 (3%)	43	63
67	O3	90/90~(100%)	89 (99%)	1 (1%)	73	87
68	O4	94/94~(100%)	93~(99%)	1 (1%)	73	87
69	O5	104/104~(100%)	102 (98%)	2 (2%)	57	75
70	O6	79/81~(98%)	78~(99%)	1 (1%)	69	84
71	07	70/70~(100%)	66 (94%)	4 (6%)	20	33
72	08	68/68~(100%)	67~(98%)	1 (2%)	65	80
73	O9	45/45~(100%)	44 (98%)	1 (2%)	52	71
74	$\mathbf{Q0}$	46/47~(98%)	46 (100%)	0	100	100
75	Q1	23/23~(100%)	23 (100%)	0	100	100
76	Q2	90/90~(100%)	85 (94%)	5 (6%)	21	34
77	Q3	71/71~(100%)	71 (100%)	0	100	100
78	SM	95/95~(100%)	94 (99%)	1 (1%)	73	87
79	eI	120/120 (100%)	118 (98%)	2 (2%)	60	78
80	S4	221/221 (100%)	217 (98%)	4 (2%)	59	76
81	E1	29/62~(47%)	29 (100%)	0	100	100
All	All	9491/9696~(98%)	9285 (98%)	206 (2%)	54	71

 $5~{\rm of}~206$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
45	M0	87	LEU
	<i>a</i>	1	

Continued from previous page...

Mol	Chain	Res	Type
52	M8	86	THR
78	SM	58	GLU
46	M1	22	SER
49	M5	80	THR

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 56 such side chains are listed below:

Mol	Chain	Res	Type
41	L6	157	GLN
80	S4	130	GLN
47	M3	19	GLN
78	SM	86	ASN
61	N7	57	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	3	120/121~(99%)	10 (8%)	2(1%)
12	4	157/158~(99%)	21 (13%)	2(1%)
13	1	3139/3162~(99%)	495 (15%)	93~(2%)
14	2	1735/1737~(99%)	467~(26%)	90~(5%)
All	All	5151/5178~(99%)	993~(19%)	187 (3%)

5 of 993 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
11	3	22	А
11	3	41	G
11	3	42	А
11	3	54	U
11	3	65	G

5 of 187 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
14	2	260	U
14	2	794	U
14	2	280	U
14	2	501	U
14	2	959	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	ond leng	\mathbf{ths}	E	Bond ang	gles
	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
79	5CT	eI	51	79	13,14,15	0.45	0	$9,\!15,\!17$	1.09	1 (11%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
79	$5\mathrm{CT}$	eI	51	79	-	6/13/14/16	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
79	eI	51	5CT	C4-C3-C2	2.76	119.29	113.47

There are no chirality outliers.

5 of 6 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
79	eI	51	5CT	C1-C2-C3-C4
79	eI	51	5CT	O1-C2-C3-C4
79	eI	51	5CT	C2-C1-NZ-CE
79	eI	51	5CT	C2-C3-C4-N1
79	eI	51	5CT	NZ-C1-C2-O1

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 303 ligands modelled in this entry, 299 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	Timle	Bo	ond leng	$_{\rm sths}$	Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
85	SPD	1	3467	-	9,9,9	0.24	0	8,8,8	0.32	0
85	SPD	1	3466	-	9,9,9	0.48	0	8,8,8	0.88	0
85	SPD	1	3465	-	9,9,9	0.26	0	8,8,8	0.34	0
84	3HE	1	3464	-	21,21,21	0.72	0	19,30,30	0.82	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
85	SPD	1	3467	-	-	1/7/7/7	-
85	SPD	1	3466	-	-	3/7/7/7	-
85	SPD	1	3465	-	-	0/7/7/7	-
84	3HE	1	3464	-	-	0/8/36/36	0/2/2/2

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
85	1	3466	SPD	N6-C7-C8-C9
85	1	3466	SPD	C3-C4-C5-N6
85	1	3466	SPD	C8-C7-N6-C5

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms
85	1	3467	SPD	C7-C8-C9-N10

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
14	2	2
21	S8	1
41	L6	1
40	L5	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	S8	123:LYS	С	135:LYS	Ν	22.02
1	L6	109:GLU	С	129:GLU	Ν	15.02
1	L5	2:ASP	С	7:ALA	Ν	7.28
1	2	658:C	O3'	676:G	Р	4.28
1	2	1672:G	O3'	1704:G	Р	3.36

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16127. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

Primary map 6.2.1

X Index: 240

Y Index: 240

Z Index: 240

6.2.2Raw map

X Index: 240

Y Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 222

Z Index: 193

6.3.2 Raw map

X Index: 221

Y Index: 247

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0143. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 825 nm^3 ; this corresponds to an approximate mass of 745 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	2.40	-	-			
Author-provided FSC curve	-	-	-			
Unmasked-calculated*	2.72	3.11	2.77			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.72 differs from the reported value 2.4 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-16127 and PDB model 8BN3. Per-residue inclusion information can be found in section 3 on page 23.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0143 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0143).

9.4 Atom inclusion (i)

At the recommended contour level, 73% of all backbone atoms, 75% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0143) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7530	0.5970
1	0.9120	0.6480
2	0.7180	0.5400
3	0.9590	0.6580
4	0.9540	0.6630
В	0.3520	0.5050
C0	0.1250	0.3300
C1	0.7230	0.6110
C3	0.6180	0.5680
C4	0.4530	0.4760
C5	0.3120	0.4430
C6	0.2180	0.4240
C7	0.2290	0.4630
C8	0.3150	0.4440
C9	0.2290	0.4460
D0	0.1860	0.3210
D1	0.5430	0.5690
D2	0.7950	0.6270
D3	0.7600	0.6160
D4	0.3480	0.4840
D5	0.0440	0.3270
D6	0.6580	0.5600
D7	0.4230	0.5350
D8	0.1340	0.3520
D9	0.6100	0.5490
$\mathrm{E0}$	0.3860	0.4790
E1	0.0000	0.1990
L2	0.9260	0.6860
L3	0.8880	0.6770
L4	0.8610	0.6660
L5	0.7360	0.6130
L6	0.7470	0.6230
L7	0.9010	0.6750
L8	0.7650	0.6300
L9	0.7840	0.6440

0.0 <0.0

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
M0	0.8280	0.6490
M1	0.6910	0.6020
M3	0.8140	0.6470
M4	0.8210	0.6470
M5	0.9700	0.6950
M6	0.9070	0.6780
M7	0.8960	0.6770
M8	0.9060	0.6740
M9	0.7880	0.6200
NO	0.8860	0.6690
N1	0.8640	0.6620
N2	0.6530	0.5870
N3	0.8630	0.6600
N4	0.8890	0.6600
N5	0.8460	0.6510
N6	0.8050	0.6480
N7	0.7580	0.6310
N8	0.8890	0.6790
N9	0.8570	0.6520
O0	0.7820	0.6240
O1	0.8160	0.6530
O2	0.9000	0.6790
O3	0.9390	0.6920
O4	0.8790	0.6700
O5	0.8110	0.6440
O6	0.7950	0.6350
07	0.9640	0.6970
08	0.6230	0.5970
O9	0.9420	0.6740
P	0.7790	0.6370
Q0	0.8540	0.6560
Q1	0.7030	0.6310
Q2	0.8470	0.6630
Q3	0.8810	0.6720
SO	0.4310	0.5260
S1	0.2870	0.4610
S2	0.6110	0.5750
S3	0.2640	0.4220
S4	0.5900	0.5700
S5	0.1720	0.3780
S6	0.2900	0.4500
S7	0.3050	0.4690

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
S8	0.6280	0.5720
S9	0.5100	0.5230
SM	0.3070	0.4810
SR	0.0130	0.3020
eI	0.6020	0.5930

