

# wwPDB X-ray Structure Validation Summary Report (i)

#### Aug 16, 2023 - 07:16 PM EDT

| PDB ID       | : | 2BE5                                                                      |
|--------------|---|---------------------------------------------------------------------------|
| Title        | : | Crystal structure of the T. Thermophilus RNA polymerase holoenzyme in     |
|              |   | complex with inhibitor tagetitoxin                                        |
| Authors      | : | Vassylyev, D.G.; Svetlov, V.; Vassylyeva, M.N.; Perederina, A.; Igarashi, |
|              |   | N.; Matsugaki, N.; Wakatsuki, S.; Artsimovitch, I.; RIKEN Structural Ge-  |
|              |   | nomics/Proteomics Initiative (RSGI)                                       |
| Deposited on | : | 2005-10-22                                                                |
| Resolution   | : | 2.40 Å(reported)                                                          |

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35                                                               |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35                                                               |



# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY\;DIFFRACTION$ 

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| R <sub>free</sub>     | 130704                                                               | 3907 (2.40-2.40)                                                          |
| Clashscore            | 141614                                                               | 4398 (2.40-2.40)                                                          |
| Ramachandran outliers | 138981                                                               | 4318 (2.40-2.40)                                                          |
| Sidechain outliers    | 138945                                                               | 4319 (2.40-2.40)                                                          |
| RSRZ outliers         | 127900                                                               | 3811 (2.40-2.40)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length |            | Quality of chain |       |     |   |  |  |  |
|-----|-------|--------|------------|------------------|-------|-----|---|--|--|--|
| 1   | А     | 315    | 22%<br>14% | 45%              | 12% • | 27% | _ |  |  |  |
| 1   | В     | 315    | 25%<br>18% | 44%              | 10% • | 27% |   |  |  |  |
| 1   | K     | 315    | 22%        | 43%              | 11% • | 27% |   |  |  |  |
| 1   | L     | 315    | 22%<br>15% | 45%              | 12%   | 27% | _ |  |  |  |
| 2   | С     | 1119   | 23%        | 589              | %     | 18% | • |  |  |  |

Continued on next page...



#### Continued from previous page...

| Mol | Chain | Length |            | Quality of chain |       |         |
|-----|-------|--------|------------|------------------|-------|---------|
| 2   | М     | 1110   | 38%        | C00/             |       | 1.00/   |
|     | 111   | 1115   | 25%        | 60%              |       | 10% •   |
| 3   | D     | 1524   | 21%        | 54%              | 15    | 5% • 9% |
| 3   | Ν     | 1524   | 25%<br>22% | 51%              | 179   | % • 9%  |
| 4   | Е     | 99     | 23%        | 56%              |       | 15% • • |
| 4   | О     | 99     | 22%        | 44%              |       | 22% •   |
| 5   | F     | 423    | 20%        | 49%              | 11% • | 18%     |
| 5   | Р     | 423    | 35%<br>21% | 48%              | 12%   | 18%     |



# 2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 61800 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | Atoms |     |              |   |   | AltConf | Trace |
|-----|-------|----------|-------|-------|-----|--------------|---|---|---------|-------|
| 1 A | 220   | Total    | С     | Ν     | 0   | $\mathbf{S}$ | 0 | 0 | 0       |       |
|     | 229   | 1806     | 1153  | 313   | 337 | 3            | 0 | 0 | 0       |       |
| 1   | D     | 220      | Total | С     | Ν   | 0            | S | 0 | 0       | 0     |
|     | D     | 229      | 1806  | 1153  | 313 | 337          | 3 | 0 | 0       | 0     |
| 1   | K     | 220      | Total | С     | Ν   | 0            | S | 0 | 0       | 0     |
|     |       | 229      | 1806  | 1153  | 313 | 337          | 3 | 0 | 0       | 0     |
| 1   | т     | 220      | Total | С     | Ν   | 0            | S | 0 | 0       | 0     |
|     | Г     | 229      | 1806  | 1153  | 313 | 337          | 3 | 0 | 0       | 0     |

• Molecule 1 is a protein called DNA-directed RNA polymerase alpha chain.

• Molecule 2 is a protein called DNA-directed RNA polymerase beta chain.

| Mol | Chain | Residues |       | Atoms |      |      |              |   | AltConf | Trace |
|-----|-------|----------|-------|-------|------|------|--------------|---|---------|-------|
| 2   | С     | 1110     | Total | С     | Ν    | Ο    | $\mathbf{S}$ | 0 | 0       | 0     |
|     | 1115  | 8829     | 5581  | 1577  | 1647 | 24   | 0            | 0 | 0       |       |
| 9   | М     | 1110     | Total | С     | Ν    | Ο    | $\mathbf{S}$ | 0 | 0       | 0     |
|     |       | 1119     | 8829  | 5581  | 1577 | 1647 | 24           |   | 0       | 0     |

• Molecule 3 is a protein called DNA-directed RNA polymerase beta' chain.

| Mol | Chain | Residues |                | Atoms     |           |           |         |   | AltConf | Trace |
|-----|-------|----------|----------------|-----------|-----------|-----------|---------|---|---------|-------|
| 3   | D     | 1392     | Total<br>10797 | C<br>6819 | N<br>1925 | O<br>2020 | S<br>33 | 0 | 0       | 0     |
| 3   | N     | 1392     | Total<br>10797 | C<br>6819 | N<br>1925 | O<br>2020 | S<br>33 | 0 | 0       | 0     |

• Molecule 4 is a protein called RNA polymerase omega chain.

| Mol | Chain | Residues | Atoms        |          |          |          |               | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|---------|-------|
| 4   | Е     | 95       | Total<br>769 | C<br>488 | N<br>133 | 0<br>144 | S<br>4        | 0       | 0       | 0     |
| 4   | О     | 95       | Total<br>769 | C<br>488 | N<br>133 | 0<br>144 | $\frac{S}{4}$ | 0       | 0       | 0     |



• Molecule 5 is a protein called RNA polymerase sigma factor rpoD.

| Mol | Chain | Residues | Atoms |     |     |              |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|--------------|---|---------|---------|-------|
| 5 F | 345   | Total    | С     | Ν   | 0   | $\mathbf{S}$ | 0 | 0       | 0       |       |
|     |       | 2771     | 1744  | 504 | 519 | 4            |   |         |         |       |
| 5   | D     | 245      | Total | С   | Ν   | 0            | S | 0       | 0       | 0     |
| 0 1 | 040   | 2771     | 1744  | 504 | 519 | 4            | 0 | 0       | 0       |       |

• Molecule 6 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 6   | С     | 1        | Total Mg<br>1 1 | 0       | 0       |
| 6   | D     | 1        | Total Mg<br>1 1 | 0       | 0       |
| 6   | Ν     | 2        | Total Mg<br>2 2 | 0       | 0       |

• Molecule 7 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 7   | D     | 2        | Total Zn<br>2 2 | 0       | 0       |
| 7   | Ν     | 2        | Total Zn<br>2 2 | 0       | 0       |

 $\bullet\,$  Molecule 8 is TAGETITOXIN (three-letter code: TGT) (formula: C\_{11}H\_{17}N\_2O\_{11}PS).





| Mol | Chain | Residues |       | A  | ton | ıs | ZeroOcc | AltConf |   |   |  |
|-----|-------|----------|-------|----|-----|----|---------|---------|---|---|--|
| 8 D | П     | 1        | Total | С  | Ν   | Ο  | Р       | S       | 0 | 0 |  |
|     | D     | 1        | 26    | 11 | 2   | 11 | 1       | 1       | 0 |   |  |
| 0   | N     | 1        | Total | С  | Ν   | Ο  | Р       | S       | 0 | 0 |  |
| 0   | IN    | T        | 26    | 11 | 2   | 11 | 1       | 1       | 0 | U |  |

• Molecule 9 is water.

| Mol | Chain | Residues | Atoms                                     | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------|---------|---------|
| 9   | А     | 250      | Total         O           250         250 | 0       | 0       |
| 9   | В     | 329      | Total O<br>329 329                        | 0       | 0       |
| 9   | С     | 1321     | Total O<br>1321 1321                      | 0       | 0       |
| 9   | D     | 1655     | Total O<br>1655 1655                      | 0       | 0       |
| 9   | Ε     | 176      | Total O<br>176 176                        | 0       | 0       |
| 9   | F     | 519      | Total O<br>519 519                        | 0       | 0       |
| 9   | К     | 278      | Total O<br>278 278                        | 0       | 0       |
| 9   | L     | 309      | Total O<br>309 309                        | 0       | 0       |
| 9   | М     | 1236     | Total O<br>1236 1236                      | 0       | 0       |
| 9   | Ν     | 1552     | Total O<br>1552 1552                      | 0       | 0       |
| 9   | Ο     | 137      | Total O<br>137 137                        | 0       | 0       |
| 9   | Р     | 422      | Total O<br>422 422                        | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: DNA-directed RNA polymerase alpha chain

#### LYS GLY PHE THR LEU LYS GLU

• Molecule 1: DNA-directed RNA polymerase alpha chain







#### CLU GLU





#### THR LEU LYS GLU

• Molecule 1: DNA-directed RNA polymerase alpha chain





#### 

#### 

• Molecule 2: DNA-directed RNA polymerase beta chain





• Molecule 2: DNA-directed RNA polymerase beta chain





| S363<br>E384<br>D365<br>S365<br>L367<br>L367<br>T368<br>P366<br>A370<br>K371<br>L377<br>K371<br>L373<br>N374<br>S375         | R376<br>9377<br>1377<br>1377<br>1378<br>1378<br>1381<br>1382<br>1383<br>1383<br>1383<br>1384<br>1384<br>1391                                                                                                                                                        | S392<br>(3393<br>(3395<br>(3395<br>(3395<br>(3395<br>(3395<br>(3395<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(3395)<br>(339 | K407<br>R408<br>R408<br>S411<br>S411<br>S411<br>S414<br>G414<br>P415<br>P415<br>P415<br>R422<br>R422<br>R422<br>R423<br>G423<br>G423<br>G423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D426<br>V427<br>N427<br>N428<br>N428<br>N430<br>H431<br>H431<br>H431<br>H434<br>Y435<br>Y435<br>R437<br>R437<br>R437<br>R437 | 0439<br>0440<br>1441<br>1443<br>1443<br>1443<br>1443<br>1444<br>1445<br>1449<br>1449<br>1449<br>1449<br>1449<br>1445<br>1445                                                                                                                                        | T453           2454           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2455           2465           2465           2465           2465           2465           2465           2465           2465           2465           2465           2465           2465           2465           2465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R468           12469           12469           12461           12469           12461           12461           12471           12471           12471           12471           12471           12472           12473           12473           12475           12475           12475           12475           12475           12480           12480           12480           12481           12481           12481           12481           12481           12481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T489<br>E490<br>E491<br>P492<br>T495<br>T495<br>A497<br>A497<br>A497<br>A497<br>A497<br>A497<br>A497<br>A497                 | P502<br>L503<br>C504<br>C504<br>C505<br>N506<br>N506<br>A510<br>E511<br>V513<br>V513<br>V513<br>V513<br>A515                                                                                                                                                        | R516<br>R517<br>K518<br>K518<br>C519<br>C520<br>F520<br>V524<br>S525<br>F528<br>F528<br>F528<br>F528<br>F528<br>F528<br>F528<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F531           M532           D533           D534           V534           V534           V535           P536           P538           P538           P538           P538           P538           P538           P538           P548           P548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| F549<br>L550<br>E551<br>H1552<br>D553<br>D553<br>A555<br>R555<br>R555<br>R555<br>R555<br>R555<br>R553<br>R553                | S562<br>N563<br>N563<br>N564<br>C565<br>C565<br>A567<br>N569<br>N574<br>A574<br>A574<br>A574<br>A574                                                                                                                                                                | A576<br>A577<br>V579<br>V579<br>V579<br>N580<br>L583<br>L583<br>L583<br>L583<br>L583<br>C585<br>R589<br>R589<br>R589<br>R589<br>R589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L592<br>L592<br>L592<br>L595<br>L595<br>L595<br>L599<br>C601<br>C601<br>C601<br>C601<br>C602<br>C605<br>C605<br>C605<br>C605<br>C605<br>C605<br>C605<br>C605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| R610<br>1611<br>1611<br>1614<br>8614<br>8614<br>8614<br>8615<br>8618<br>8618<br>8618<br>8618<br>8628<br>8628<br>8628<br>8628 | Y623           P624           L625           L625           R626           Y626           R627           9633           G634           G634           G635           G636           G636           G636           G636           G636           G636           G636 | L637<br>D638<br>Q638<br>P641<br>V644<br>V644<br>V644<br>C645<br>R642<br>Q645<br>R647<br>R649<br>R650<br>R651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>G652</b><br><b>C653</b><br>L6554<br>L6554<br><b>A655</b><br>P6559<br>P6559<br>P6559<br>P6559<br>P6653<br>P6657<br>C668<br>C668<br>C668<br>C668<br>C668<br>C668<br>C668<br>C670<br>C672<br>C672<br>C672<br>C672<br>C672<br>C672<br>C672<br>C672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L673<br>V674<br>1677<br>1677<br>1677<br>F677<br>F679<br>P678<br>F679<br>D680<br>0681<br>V683<br>N083<br>F684<br>F684<br>F684 | D886<br>1687<br>1688<br>1689<br>1690<br>1690<br>1694<br>1694<br>1694<br>1694<br>1695<br>1699<br>1698<br>1699                                                                                                                                                        | 1700<br>1701<br>5702<br>1703<br>1703<br>1703<br>1706<br>1706<br>1706<br>1706<br>1710<br>1710<br>1711<br>1715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K'16<br>L'117<br>G'18<br>P'19<br>P'19<br>E'20<br>R'21<br>1'723<br>R'724<br>D'725<br>B'725<br>B'725<br>B'725<br>B'725<br>B'725<br>B'725<br>B'726<br>B'725<br>B'726<br>B'726<br>B'728<br>B'726<br>B'727<br>A'733<br>A'733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L734<br>R735<br>D736<br>D736<br>E739<br>E739<br>E741<br>V741<br>V742<br>V743<br>R744<br>R744<br>T745<br>C746<br>C745         | A/47<br>A/47<br>V799<br>P751<br>6751<br>0752<br>D753<br>D755<br>V756<br>V756<br>V756<br>V756<br>V756<br>V756<br>V756<br>V                                                                                                                                           | F761<br>F762<br>6763<br>E764<br>E764<br>F766<br>F766<br>F766<br>F770<br>E770<br>E770<br>E771<br>L773<br>L774<br>R775<br>R775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2776<br>1777<br>7779<br>6779<br>6779<br>6779<br>778<br>778<br>778<br>7783<br>7783<br>7785<br>7785<br>7785<br>1788<br>7785<br>1788<br>7789<br>1790<br>1790<br>1790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P794<br>6795<br>6796<br>6797<br>6797<br>1739<br>1800<br>1800<br>1800<br>1800<br>1800<br>1800<br>1800<br>180                  | R807<br>R803<br>6808<br>6809<br>9811<br>9811<br>8814<br>8814<br>8814<br>8814<br>8815<br>8814<br>8818<br>8818                                                                                                                                                        | E821<br>V822<br>V823<br>R824<br>R824<br>V825<br>V825<br>V825<br>L833<br>L833<br>L833<br>L833<br>C836<br>C836<br>C836<br>C836<br>C836<br>C836<br>C836<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K838<br>4840<br>4841<br>8841<br>8842<br>8445<br>8445<br>8445<br>8445<br>8445<br>8445<br>8445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M858<br>P859<br>P850<br>P860<br>P861<br>P864<br>P865<br>P865<br>P865<br>P865<br>P865<br>P865<br>P865<br>P865                 | L871<br>N872<br>P873<br>L874<br>C875<br>6875<br>6875<br>8875<br>P877<br>P877<br>N881<br>N881<br>L882<br>C883<br>G884<br>Q884                                                                                                                                        | 11855<br>L886<br>1287<br>1289<br>1289<br>1289<br>1289<br>1289<br>1289<br>1289<br>1289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1902<br>8903<br>1904<br>1905<br>1905<br>6906<br>6908<br>6910<br>1914<br>1912<br>1912<br>1912<br>1912<br>1912<br>1912<br>1912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| F922<br>(1925)<br>7925<br>6927<br>6927<br>6927<br>6927<br>6933<br>6931<br>6933<br>6933<br>6933<br>6933<br>6933               | 8937<br>8938<br>8938<br>8940<br>8941<br>19443<br>19444<br>19445<br>8945<br>8945<br>8945<br>8945<br>8945<br>8945                                                                                                                                                     | L550<br>1551<br>1552<br>1555<br>1555<br>1555<br>1555<br>1555<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K 671<br>K 671<br>V 972<br>V 973<br><b>L 974</b><br>C 975<br>C 977<br>C 982<br>C 982<br>C 985<br>C 98 |
| 993<br>994<br>995<br>996<br>997<br>997<br>1000<br>1000<br>1001<br>1001<br>1003                                               | 1006<br>1006<br>1009<br>1014<br>1015<br>1015<br>1015<br>1015<br>1018<br>1018<br>1020                                                                                                                                                                                | 1021<br>1022<br>1023<br>1024<br>1025<br>1025<br>1035<br>1035<br>1035<br>1035<br>1035<br>1035<br>1035<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1037<br>1038<br>1038<br>1046<br>1044<br>1044<br>1044<br>1045<br>1045<br>1046<br>1056<br>1056<br>1056<br>1055<br>1055<br>1055<br>1055<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                         | 0010<br>0014<br>0014<br>0014<br>0014<br>0014<br>0014<br>0014                                                                                                                                                                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1001<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005<br>1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9<br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                            | H H M H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                             | <mark>n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TITE TERMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| R111                                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

 $\bullet$  Molecule 3: DNA-directed RNA polymerase beta' chain

25% Chain D: 21% 54% 15% 9%













| L123               | E124                                                                                        | V126 | L127 | Y128         | 5123<br>S130 | K131     | Y132         | V134       | L135   | D136              | P137   | 6139<br>6139 | A140     | I141      | L142         | V1AF         | P146 | V147   | E148   | K149     | R150         | L152     | L153   | T154  | D155<br>F156 | E157                                    | Y158        | R159       | E160          | R162        | Y163         | 4104<br>K165 | Q166  | E167          | Y169  | P170         | L1/1<br>P172 | P173 |      |               | L178                                                                | V179         | D181         | G182         |                |
|--------------------|---------------------------------------------------------------------------------------------|------|------|--------------|--------------|----------|--------------|------------|--------|-------------------|--------|--------------|----------|-----------|--------------|--------------|------|--------|--------|----------|--------------|----------|--------|-------|--------------|-----------------------------------------|-------------|------------|---------------|-------------|--------------|--------------|-------|---------------|-------|--------------|--------------|------|------|---------------|---------------------------------------------------------------------|--------------|--------------|--------------|----------------|
| V185               | V186                                                                                        | G188 | Q189 | E190         | 4192<br>A192 | P193     | G194<br>V105 | V196       | S197   | R198              | L199   | 0200<br>(201 | V202     | A203      | L204         | Y205         | F207 | P208   | R209   | R210     | V211<br>R010 | V213     | E214   | Y215  | V216<br>K217 | K218                                    | E219        | R220       | G222          | L223        | R224         | P226         | H     | W230<br>V231  | E232  | K233         | E234<br>A235 | Y236 | K237 | P238          | E240                                                                | 1241         | A243         | <b>1</b> 111 | F240<br>E247   |
| P248               | Y249                                                                                        | F251 | ARG  | ALA          | GLU          | GLU      | GLY          | VAL        | GLU    | LEU               | LYS    | GLU<br>LEU   | GLU      | GLU       | GLY          | ALA<br>DHF   | LEU  | VAL    | LEU    | ARG      | GUII         | ASP      | GLU    | PRO   | VAL          | THR                                     | TYR         | PHE        | PRO           | VAL         | GLY          | THR          | PRO   | LEU<br>VAL    | VAL   | SIH          | GLU          | ILE  | VAL  | GLU<br>LYS    | GLY                                                                 | GLN          | LEU          | ALA          | ALA            |
| LYS                | GLY                                                                                         | LEU  | ARG  | MET          | ARG          | GLN      | VAL          | ALA        | ALA    | GLN               | VAL    | AL.0<br>AL.A | GLU      | GLU       | GLU          | GL T         | THR  | VAL    | TYR    | LEU      | THR<br>T FII | PHE      | LEU    | GLU   | TRP<br>THR   | GLU                                     | PRO         | LYS        | TYR           | ARG         | VAL          | PRO          | HIS   | MET           | VAL   | VAL          | PRO          | GLU  | GLY  | ALA<br>ARG    | VAL                                                                 | GLU<br>GLU   | ALA<br>G364  | D365         |                |
| V368               | A369                                                                                        |      | P373 | 1370         | A379         | E380     | A381         |            | V385   | H386              | L387   | H389<br>F389 | P390     | A391      | S392         | 1393<br>1304 | V395 | V396   | K397   | A398     | K399<br>V400 | Y401     | P402   | F403  |              | D406                                    | V407        | E408       | V409<br>S410  | T411        | G412         | R414         | V415  | A416<br>P417  | G418  | D419         | 1420<br>L421 | A422 | D423 | G425          | K426                                                                | V427         | S429         | D430         | V431<br>Y432   |
| 433                | 434                                                                                         | 436  | 437  | 438<br>430   | 440          | 441      | 442          | 444        | 445    | 446               | 447    | 448          | 450      | 451       | 452          | 453          | 455  | 456    |        | 459      | 460          | 462      | 463    | 464   | 465<br>466   | 467                                     | 468         | 469        | 4/0           | 472         | 473          | 4/4          | 476   | 477<br>478    | 479   | 480          | 481          | 483  | 484  | 485<br>486    | 487                                                                 | 488          | 400          | 491          | 492<br>493     |
| 9 <mark>4</mark> 0 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |      |      |              | 22           | 03<br>P  |              |            | 7<br>F | 80                | 0<br>0 | <u>, -</u>   | 10       | 3         | 4<br>        | ے ہے<br>س    |      | 2<br>0 | •<br>0 |          |              |          | 24     |       | 26 I         | •                                       | 1<br>• 6    |            |               | 33 •        |              |              | 37 E  |               |       |              |              | H H  | L C  |               | - 81<br>- 10<br>- 10<br>- 10<br>- 10<br>- 10<br>- 10<br>- 10<br>- 1 | 6 .<br>H     |              | •            | 2 <del>2</del> |
| • K49              | • R49                                                                                       | E49  |      | R50          | F50          | •<br>T20 | D50          | GEO        | NEO    | R50               | P50    |              | WE 1     | I51       | L51          | E51<br>A51   |      | P51    | V51    | L52      | P52          | •<br>D52 | L52    | R52   | P52          |                                         | <b>Q</b> 52 | V53        | G53<br>G53    | <b>G</b> 53 | ●<br>R53     | A53          | T53   | 853<br>D5.3   | L54   | N54          |              | Y54  | R54  | 1.54          | •<br>154                                                            | N54          | N55          | N55          |                |
| K555               | K556                                                                                        | L558 |      | G561<br>AFE2 | P563         | E564     | I565         | 1567       | R568   | N569              | E570   | K5/1<br>R572 | M573     | L574      | 0575<br>0575 | E5/6         | V578 | D579   | A580   | L581     | L582<br>D583 | N584     | G585   | R586  | R587<br>C588 | A589                                    | P590        | V591       | 1592<br>N593  | P594        | 6595<br>6506 | D597         | R598  | P599<br>1.600 | R601  | S602         | 1604<br>1604 | D605 | 1606 | L607<br>S608  | G609                                                                | K610<br>D611 | 4011<br>G612 | R613         | r014<br>R615   |
| Q616               | N617                                                                                        | L619 | G620 | K621         | V623         | D624     | Y625         | R628       | S629   | V630              | I631   | V633         | G634     | P635      | <b>Q636</b>  | L63/<br>V638 | L639 | H640   | Q641   | C642     | G643<br>1644 | P645     | K646   | R647  | M648<br>A649 | L650                                    | E651        | 1100       | P655          | F656        | L657         | L000<br>K659 | K660  | M661<br>F.662 | E663  | U U U U      |              | P668 | N669 | V671          | A672                                                                | A673         | R675         | M676         | E678           |
| R679               | <b>Q680</b>                                                                                 | D682 | I683 | K684         | E686         | V687     | W688         | A690       | L691   | E692              | E693   | V694<br>T695 | H696     | G697      | K698         | V699<br>V700 | L701 | L702   | N7 03  | R704     | A705         |          | L708   | H7 09 | R710         | G712                                    | I713        | Q714       | A/ 15<br>F716 | Q717        | P718         | L720         | -     | S725          | Q7.27 | L728         | P730         | L731 | V732 | C/ 33<br>E734 | A735                                                                | F736         | NI OI        | F740         | D/ 41<br>G7 42 |
| D743               | Q744<br>W745                                                                                | A746 | V747 | H748<br>V740 | P750         | L751     | S752         | F754       | A755   | <mark>q756</mark> | A757   |              | R760     | I761      | q762         | M/63         | S765 | A766   | H767   | N768     | L769<br>L770 | S771     | P772   | A773  | S774         | E776                                    | P777        | L778       | K780          | P781        | S782         | n/03<br>D784 | 1785  | 1786<br>1.787 | G788  | L789<br>V760 | Y791         | 1792 | T793 | 4/94<br>V795  | R796                                                                | K797         | E (30        | K800         | A802           |
| 803                | 804<br>805                                                                                  | 806  | 807  | 808          | 810          | 811      | 812<br>013   | 010        | 817    |                   | 820    | 821<br>822   | 823      | 824       | 825          | 826          | 828  | 829    | 830    | 831      | 832          | 834      | 835    | 836   | 837<br>838   | 000000000000000000000000000000000000000 | 840         | 841<br>840 | 843           | 844         | 845          | 847          | 848   | 849<br>850    | 851   | 852          | 854<br>•     | 855  | 856  | 858           | 859                                                                 | 860          | 862          | 863          | 865<br>865     |
| <del>в</del><br>0  |                                                                                             |      | •    | •            |              | E T      |              |            | ш<br>  |                   |        |              | . L]     | 4<br>N    |              | <u>о</u> к   |      | N      | A      | <b>0</b> |              |          | 0<br>0 | •     |              |                                         | K           |            | > 4           | 4           |              |              | ы<br> |               |       | 2 v          |              |      | 0    |               |                                                                     | <u></u> - с  | 3 G          |              | > F1           |
| V86                | R86                                                                                         | M86  | G87( | K87.         | L87          | • E874   | T87          | 100<br>187 | G878   | R87               | I88    | F88          | •<br>488 | •<br>R884 |              | V88<br>188   | E88  | A88!   | V89(   | E89      | D89.         | • K894   | V89    | A89   | W89<br>F805  | L890                                    | 106I        | 060        | DBO           | <b>V90</b>  | 106d         | LOGE         | K90   | 06N<br>8916   | L91   | K91.         | L914         | V91  | 101  |               | L92(                                                                | R92          | G921         | M92          | K92            |
| T927               | A928                                                                                        | L930 | L931 | D932         | COCH         | Y936     | Y937         | T940       | F941   | S942              | T943   | 1944<br>S945 | G946     | 1947      | T948         | 1949<br>2050 | 1951 | D952   | D953   | A954     | V955<br>T956 | P967     | E958   | E959  | К960<br>К961 | 0962<br>0962                            | Y963        | L964       | E966          | A967        | D968         | K970         | L971  | L972<br>0973  | 1974  | E975         | 4979<br>A977 | Y978 | E979 | G981          | F982                                                                | DORE         | ижоо<br>R986 | E987         | 11989<br>1989  |





# 

# TG2 W63 W63 K66 E67 E67 F73 C71 C73 F75 F84 B83 F84 C85 F84 B83 F84 C85 F84 B84 F84 C85 F84 F85 F84 C85 F84 F85 F84 F85 F85 F85 F85 F85 F85











# 4 Data and refinement statistics (i)

| Property                                                 | Value                                                          | Source           |
|----------------------------------------------------------|----------------------------------------------------------------|------------------|
| Space group                                              | P 32                                                           | Depositor        |
| Cell constants<br>a, b, c, $\alpha$ , $\beta$ , $\gamma$ | 239.50Å 239.50Å 253.10Å<br>90.00° 90.00° 120.00°               | Depositor        |
| Resolution (Å)                                           | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$           | Depositor<br>EDS |
| % Data completeness                                      | (Not available) $(25.00-2.40)$                                 | Depositor        |
| (in resolution range)                                    | 95.2(36.81-2.40)                                               | EDS              |
| $R_{merge}$                                              | 0.10                                                           | Depositor        |
| $R_{sym}$                                                | (Not available)                                                | Depositor        |
| $< I/\sigma(I) > 1$                                      | $4.65 (at 2.39 \text{\AA})$                                    | Xtriage          |
| Refinement program                                       | CNS 1.1                                                        | Depositor        |
| D D                                                      | 0.237 , $0.274$                                                | Depositor        |
| $\mathbf{n},  \mathbf{n}_{free}$                         | 0.235 , $0.272$                                                | DCC              |
| $R_{free}$ test set                                      | 34795 reflections $(5.75%)$                                    | wwPDB-VP         |
| Wilson B-factor $(Å^2)$                                  | 33.7                                                           | Xtriage          |
| Anisotropy                                               | 0.106                                                          | Xtriage          |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$              | (Not available), (Not available)                               | EDS              |
| L-test for $twinning^2$                                  | $<  L  > = 0.42, < L^2 > = 0.25$                               | Xtriage          |
| Estimated twinning fraction                              | 0.499 for -h,-k,l<br>0.065 for h,-h-k,-l<br>0.065 for -k,-h,-l | Xtriage          |
| Reported twinning fraction                               | 0.500 for H, K, L<br>0.500 for -h,-k,l                         | Depositor        |
| Outliers                                                 | 0 of 604645 reflections                                        | Xtriage          |
| $F_o, F_c$ correlation                                   | 0.70                                                           | EDS              |
| Total number of atoms                                    | 61800                                                          | wwPDB-VP         |
| Average B, all atoms $(Å^2)$                             | 51.0                                                           | wwPDB-VP         |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.81% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: TGT, ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain | Bo   | nd lengths                    | B    | ond angles                     |
|------|-------|------|-------------------------------|------|--------------------------------|
| WIOI | Unam  | RMSZ | # Z  > 5                      | RMSZ | # Z  > 5                       |
| 1    | А     | 0.77 | 0/1838                        | 0.86 | 3/2498~(0.1%)                  |
| 1    | В     | 0.70 | 0/1838                        | 0.83 | 4/2498~(0.2%)                  |
| 1    | Κ     | 0.76 | 0/1838                        | 0.85 | 4/2498~(0.2%)                  |
| 1    | L     | 0.73 | 0/1838                        | 0.76 | 0/2498                         |
| 2    | С     | 0.81 | 0/8997                        | 0.89 | 8/12164~(0.1%)                 |
| 2    | М     | 0.80 | 2/8997~(0.0%)                 | 0.89 | 12/12164~(0.1%)                |
| 3    | D     | 0.82 | 0/10975                       | 0.92 | $21/14836 \ (0.1\%)$           |
| 3    | Ν     | 0.80 | 1/10975~(0.0%)                | 0.92 | 17/14836~(0.1%)                |
| 4    | Е     | 0.80 | 0/783                         | 0.94 | 0/1054                         |
| 4    | 0     | 0.81 | 0/783                         | 0.92 | 0/1054                         |
| 5    | F     | 0.71 | 0/2812                        | 0.81 | 1/3781~(0.0%)                  |
| 5    | Р     | 0.72 | 0/2812                        | 0.78 | 2/3781~(0.1%)                  |
| All  | All   | 0.79 | $3/5\overline{4486}\ (0.0\%)$ | 0.89 | $72/\overline{73662}\ (0.1\%)$ |

All (3) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Ζ     | Observed(Å) | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|---------|-------|-------------|--------------------------------------------|
| 3   | N     | 733 | CYS  | CB-SG   | -5.54 | 1.72        | 1.81                                       |
| 2   | М     | 202 | TYR  | CD2-CE2 | 5.05  | 1.47        | 1.39                                       |
| 2   | М     | 682 | TYR  | CD2-CE2 | 5.02  | 1.46        | 1.39                                       |

The worst 5 of 72 bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-----------|-------|------------------|---------------|
| 1   | В     | 138  | LEU  | CA-CB-CG  | 10.11 | 138.56           | 115.30        |
| 3   | N     | 199  | LEU  | CA-CB-CG  | -8.78 | 95.11            | 115.30        |
| 2   | М     | 557  | ARG  | NE-CZ-NH2 | 7.73  | 124.17           | 120.30        |
| 3   | D     | 199  | LEU  | CA-CB-CG  | -7.64 | 97.72            | 115.30        |
| 3   | N     | 1389 | LEU  | CA-CB-CG  | 7.54  | 132.65           | 115.30        |

There are no chirality outliers.



There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 1806  | 0        | 1861     | 232     | 0            |
| 1   | В     | 1806  | 0        | 1861     | 217     | 0            |
| 1   | Κ     | 1806  | 0        | 1861     | 195     | 0            |
| 1   | L     | 1806  | 0        | 1861     | 216     | 0            |
| 2   | С     | 8829  | 0        | 8933     | 1248    | 0            |
| 2   | М     | 8829  | 0        | 8933     | 1139    | 0            |
| 3   | D     | 10797 | 0        | 10873    | 1481    | 0            |
| 3   | Ν     | 10797 | 0        | 10873    | 1398    | 0            |
| 4   | Е     | 769   | 0        | 775      | 101     | 0            |
| 4   | 0     | 769   | 0        | 775      | 98      | 0            |
| 5   | F     | 2771  | 0        | 2844     | 350     | 0            |
| 5   | Р     | 2771  | 0        | 2844     | 345     | 0            |
| 6   | С     | 1     | 0        | 0        | 0       | 0            |
| 6   | D     | 1     | 0        | 0        | 0       | 0            |
| 6   | Ν     | 2     | 0        | 0        | 0       | 0            |
| 7   | D     | 2     | 0        | 0        | 0       | 0            |
| 7   | Ν     | 2     | 0        | 0        | 0       | 0            |
| 8   | D     | 26    | 0        | 15       | 3       | 0            |
| 8   | Ν     | 26    | 0        | 14       | 1       | 0            |
| 9   | А     | 250   | 0        | 0        | 46      | 0            |
| 9   | В     | 329   | 0        | 0        | 67      | 0            |
| 9   | С     | 1321  | 0        | 0        | 266     | 0            |
| 9   | D     | 1655  | 0        | 0        | 324     | 0            |
| 9   | Ε     | 176   | 0        | 0        | 32      | 0            |
| 9   | F     | 519   | 0        | 0        | 103     | 0            |
| 9   | Κ     | 278   | 0        | 0        | 43      | 0            |
| 9   | L     | 309   | 0        | 0        | 68      | 0            |
| 9   | М     | 1236  | 0        | 0        | 259     | 0            |
| 9   | Ν     | 1552  | 0        | 0        | 306     | 0            |
| 9   | 0     | 137   | 0        | 0        | 23      | 0            |
| 9   | Р     | 422   | 0        | 0        | 84      | 0            |
| All | All   | 61800 | 0        | 54323    | 6611    | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including



hydrogen atoms). The all-atom clashscore for this structure is 61.

The worst 5 of 6611 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 2:M:409:ARG:HA   | 2:M:454:SER:HA   | 1.20                        | 1.15                 |
| 3:D:1045:MET:HG2 | 3:D:1073:SER:HA  | 1.33                        | 1.10                 |
| 3:D:119:SER:HB2  | 3:D:123:LEU:H    | 1.23                        | 1.04                 |
| 2:C:987:ILE:HG23 | 3:D:948:THR:HG21 | 1.41                        | 1.02                 |
| 2:C:457:ALA:HB3  | 2:C:538:GLN:HA   | 1.43                        | 1.01                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed         | Favoured   | Allowed   | Outliers | Percentiles |
|-----|-------|------------------|------------|-----------|----------|-------------|
| 1   | А     | 227/315~(72%)    | 200 (88%)  | 22 (10%)  | 5(2%)    | 6 7         |
| 1   | В     | 227/315~(72%)    | 200 (88%)  | 22 (10%)  | 5(2%)    | 6 7         |
| 1   | Κ     | 227/315~(72%)    | 200 (88%)  | 23 (10%)  | 4 (2%)   | 8 10        |
| 1   | L     | 227/315~(72%)    | 200 (88%)  | 23 (10%)  | 4 (2%)   | 8 10        |
| 2   | С     | 1117/1119 (100%) | 927~(83%)  | 138 (12%) | 52 (5%)  | 2 1         |
| 2   | М     | 1117/1119 (100%) | 926~(83%)  | 142 (13%) | 49 (4%)  | 2 2         |
| 3   | D     | 1388/1524~(91%)  | 1155~(83%) | 168 (12%) | 65~(5%)  | 2 1         |
| 3   | Ν     | 1388/1524~(91%)  | 1133~(82%) | 187 (14%) | 68~(5%)  | 2 1         |
| 4   | Е     | 93/99~(94%)      | 76~(82%)   | 13 (14%)  | 4 (4%)   | 2 2         |
| 4   | Ο     | 93/99~(94%)      | 76~(82%)   | 13 (14%)  | 4 (4%)   | 2 2         |
| 5   | F     | 341/423~(81%)    | 290~(85%)  | 35 (10%)  | 16 (5%)  | 2 1         |
| 5   | Р     | 341/423~(81%)    | 288 (84%)  | 38 (11%)  | 15 (4%)  | 2 2         |
| All | All   | 6786/7590~(89%)  | 5671 (84%) | 824 (12%) | 291 (4%) | 2 2         |



5 of 291 Ramachandran outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 29             | GLU  |
| 1   | В     | 29             | GLU  |
| 1   | В     | 48             | ILE  |
| 2   | С     | 152            | PRO  |
| 2   | С     | 231            | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers   | Perce | ntiles |
|-----|-------|-----------------|------------|------------|-------|--------|
| 1   | А     | 202/273~(74%)   | 149 (74%)  | 53~(26%)   | 0     | 0      |
| 1   | В     | 202/273~(74%)   | 167 (83%)  | 35 (17%)   | 2     | 2      |
| 1   | Κ     | 202/273~(74%)   | 154 (76%)  | 48 (24%)   | 0     | 0      |
| 1   | L     | 202/273~(74%)   | 152 (75%)  | 50 (25%)   | 0     | 0      |
| 2   | С     | 941/941~(100%)  | 722 (77%)  | 219 (23%)  | 1     | 1      |
| 2   | М     | 941/941~(100%)  | 731 (78%)  | 210 (22%)  | 1     | 1      |
| 3   | D     | 1123/1279~(88%) | 861 (77%)  | 262~(23%)  | 1     | 1      |
| 3   | Ν     | 1123/1279~(88%) | 832 (74%)  | 291 (26%)  | 0     | 0      |
| 4   | Ε     | 83/87~(95%)     | 65~(78%)   | 18 (22%)   | 1     | 1      |
| 4   | Ο     | 83/87~(95%)     | 61 (74%)   | 22 (26%)   | 0     | 0      |
| 5   | F     | 295/370~(80%)   | 234 (79%)  | 61 (21%)   | 1     | 1      |
| 5   | Р     | 295/370~(80%)   | 242 (82%)  | 53 (18%)   | 1     | 2      |
| All | All   | 5692/6446~(88%) | 4370 (77%) | 1322 (23%) | 1     | 1      |

5 of 1322 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 2   | М     | 925  | TYR  |
| 3   | Ν     | 1019 | PRO  |
| 2   | М     | 1111 | ILE  |
| 2   | М     | 923  | GLU  |

Continued on next page...



 $Continued \ from \ previous \ page...$ 

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 3   | Ν     | 542                  | ASP  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 167 such side chains are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 2   | М     | 565  | GLN  |
| 3   | Ν     | 901  | GLN  |
| 2   | М     | 671  | ASN  |
| 3   | Ν     | 166  | GLN  |
| 3   | Ν     | 1334 | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 8 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Turne | Chain | Dec  | Tink    | B        | ond leng | gths     | Bond angles |      |          |  |
|-------|-------|-------|------|---------|----------|----------|----------|-------------|------|----------|--|
| IVIOI | туре  | Unam  | nes  | es Link | Counts   | RMSZ     | # Z  > 2 | Counts      | RMSZ | # Z  > 2 |  |
| 8     | TGT   | Ν     | 9002 | 6       | 21,27,27 | 4.52     | 15 (71%) | 21,44,44    | 2.64 | 6 (28%)  |  |
| 8     | TGT   | D     | 9001 | 6       | 21,27,27 | 4.19     | 17 (80%) | 21,44,44    | 2.60 | 7 (33%)  |  |



In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|------|------|---------|------------|---------|
| 8   | TGT  | Ν     | 9002 | 6    | -       | 7/14/57/57 | 0/2/2/2 |
| 8   | TGT  | D     | 9001 | 6    | -       | 6/14/57/57 | 0/2/2/2 |

The worst 5 of 32 bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms   | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|---------|------|-------------|----------|
| 8   | D     | 9001 | TGT  | O11-C10 | 9.53 | 1.55        | 1.20     |
| 8   | Ν     | 9002 | TGT  | O11-C10 | 8.80 | 1.53        | 1.20     |
| 8   | N     | 9002 | TGT  | O3-C8   | 8.54 | 1.41        | 1.23     |
| 8   | Ν     | 9002 | TGT  | C1-C2   | 5.90 | 1.63        | 1.53     |
| 8   | D     | 9001 | TGT  | C3-C4   | 5.77 | 1.64        | 1.52     |

The worst 5 of 13 bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|------|------------------|---------------|
| 8   | D     | 9001 | TGT  | O10-C10-C11 | 7.11 | 124.18           | 111.09        |
| 8   | Ν     | 9002 | TGT  | C3-O10-C10  | 6.95 | 128.47           | 117.72        |
| 8   | Ν     | 9002 | TGT  | O10-C10-C11 | 6.89 | 123.76           | 111.09        |
| 8   | D     | 9001 | TGT  | C3-O10-C10  | 5.92 | 126.88           | 117.72        |
| 8   | D     | 9001 | TGT  | O9-P1-O6    | 3.42 | 121.31           | 105.99        |

There are no chirality outliers.

5 of 13 torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms          |
|-----|-------|----------------|------|----------------|
| 8   | D     | 9001           | TGT  | O1-C7-C9-O5    |
| 8   | D     | 9001           | TGT  | С11-С10-О10-С3 |
| 8   | D     | 9001           | TGT  | O11-C10-O10-C3 |
| 8   | Ν     | 9002           | TGT  | O1-C7-C9-O5    |
| 8   | N     | 9002           | TGT  | С11-С10-О10-С3 |

There are no ring outliers.

2 monomers are involved in 4 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 8   | N     | 9002 | TGT  | 1       | 0            |
| 8   | D     | 9001 | TGT  | 3       | 0            |



The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.









# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed         | <RSRZ $>$ | # <b>RSR</b> | Z>2 | 2 | $\mathbf{OWAB}(\mathrm{\AA}^2)$ | Q<0.9 |
|-----|-------|------------------|-----------|--------------|-----|---|---------------------------------|-------|
| 1   | А     | 229/315~(72%)    | 2.02      | 70 (30%)     | 0   | 0 | 18, 47, 72, 88                  | 0     |
| 1   | В     | 229/315~(72%)    | 2.74      | 80 (34%)     | 0   | 0 | 34, 66, 82, 88                  | 0     |
| 1   | K     | 229/315~(72%)    | 1.39      | 69 (30%)     | 0   | 0 | 21,  43,  70,  92               | 0     |
| 1   | L     | 229/315~(72%)    | 2.07      | 69 (30%)     | 0   | 0 | 34,62,82,95                     | 0     |
| 2   | C     | 1119/1119 (100%) | 3.02      | 409 (36%)    | 0   | 0 | 15, 58, 81, 94                  | 0     |
| 2   | М     | 1119/1119 (100%) | 3.12      | 422 (37%)    | 0   | 0 | 15,55,81,97                     | 0     |
| 3   | D     | 1392/1524~(91%)  | 1.93      | 383 (27%)    | 0   | 0 | 15,  49,  82,  97               | 0     |
| 3   | N     | 1392/1524~(91%)  | 1.97      | 384 (27%)    | 0   | 0 | 16,  48,  83,  105              | 0     |
| 4   | Е     | 95/99~(95%)      | 1.35      | 23~(24%)     | 0   | 0 | 30, 59, 82, 103                 | 0     |
| 4   | Ο     | 95/99~(95%)      | 1.69      | 22~(23%)     | 0   | 0 | 22, 59, 77, 87                  | 0     |
| 5   | F     | 345/423~(81%)    | 3.86      | 158 (45%)    | 0   | 0 | 38,63,83,97                     | 0     |
| 5   | Р     | 345/423~(81%)    | 3.90      | 150 (43%)    | 0   | 0 | 41,  64,  85,  92               | 0     |
| All | All   | 6818/7590~(89%)  | 2.51      | 2239 (32%)   | 0   | 0 | 15, 54, 82, 105                 | 0     |

The worst 5 of 2239 RSRZ outliers are listed below:

| Mol | Chain | Res  | Type | RSRZ |
|-----|-------|------|------|------|
| 3   | D     | 854  | ALA  | 66.8 |
| 3   | Ν     | 1246 | VAL  | 60.6 |
| 3   | N     | 532  | GLY  | 59.3 |
| 3   | N     | 533  | GLY  | 56.7 |
| 3   | N     | 1248 | GLY  | 56.6 |

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | B-factors(Å <sup>2</sup> ) | Q<0.9 |
|-----|------|-------|------|-------|------|------|----------------------------|-------|
| 8   | TGT  | D     | 9001 | 26/26 | 0.81 | 0.43 | 44,47,50,52                | 0     |
| 8   | TGT  | N     | 9002 | 26/26 | 0.81 | 0.61 | 41,47,51,52                | 0     |
| 6   | MG   | С     | 9004 | 1/1   | 0.97 | 0.06 | 17,17,17,17                | 0     |
| 6   | MG   | D     | 9003 | 1/1   | 0.98 | 0.06 | 17,17,17,17                | 0     |
| 6   | MG   | Ν     | 9005 | 1/1   | 0.98 | 0.03 | 13,13,13,13                | 0     |
| 7   | ZN   | Ν     | 9059 | 1/1   | 0.99 | 0.06 | 42,42,42,42                | 0     |
| 7   | ZN   | Ν     | 9113 | 1/1   | 0.99 | 0.10 | 41,41,41,41                | 0     |
| 6   | MG   | N     | 9006 | 1/1   | 0.99 | 0.04 | 4,4,4,4                    | 0     |
| 7   | ZN   | D     | 9112 | 1/1   | 0.99 | 0.05 | 50,50,50,50                | 0     |
| 7   | ZN   | D     | 9058 | 1/1   | 1.00 | 0.17 | 56, 56, 56, 56             | 0     |

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.









# 6.5 Other polymers (i)

There are no such residues in this entry.

