

Full wwPDB NMR Structure Validation Report (i)

Aug 6, 2020 – 10:48 PM BST

PDB ID : 4B1Q

Title: NMR structure of the glycosylated conotoxin CcTx from Conus consors

Authors: Hocking, H.G.; Gerwig, G.J.; Favreau, P.; Stocklin, R.; Kamerling, J.P.; Boe-

lens, R.

Deposited on : 2012-07-12

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

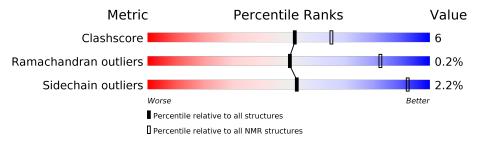
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

RCI : v 1n 11 5 13 A (Berjanski et al., 2005)

PANAV : Wang et al. (2010)

ShiftChecker : 2.13.1

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.13.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 72%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	NMR archive
Metric	$(\# \mathrm{Entries})$	$(\# \mathrm{Entries})$
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain			
1	Р	30	73%		27%	
2	A	5	60%	20%	20%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA and RNA chains that are outliers for geometric criteria:

Mal	Chain	Compound	Dog	Total mo	dels with violations
MIOI	Chain	Compound	nes	Chirality	Geometry
2	A	GAL	2	2	-
2	A	GXL	5	1	-

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 3 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative.

The following residues are included in the computation of the global validation metrics.

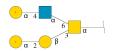
Well-defined (core) protein residues				
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model	
1	P:7-P:16, P:18-P:21, P:23-	0.43	3	
	P:30 (22)			

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 3 clusters and 2 single-model clusters were found.

Cluster number	Models
1	3, 8, 11, 12, 13, 14, 17
2	2, 5, 6, 15, 16, 20
3	4, 7, 9, 10, 19
Single-model clusters	1; 18


3 Entry composition (i)

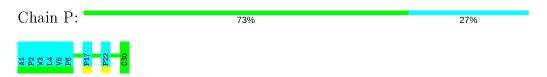
There are 2 unique types of molecules in this entry. The entry contains 530 atoms, of which 252 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called CONOTOXIN CCTX.

Mol	Chain	Residues	${f Atoms}$				Trace		
1	D	20	Total	С	Η	N	О	S	0
1	Г	30	412	131	195	34	44	8	U

• Molecule 2 is an oligosaccharide called alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)]2 -acetamido-2-deoxy-alpha-D-galactopyranose.

Mol	Chain	Residues		$\mathbf{A}\mathbf{t}$	$\overline{\mathrm{oms}}$			Trace
9	Λ	<u> </u>	Total	С	Н	N	О	0
	A	9	118	34	57	2	25	U



4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 2: alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-alpha-D-galactopyranose

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: CONOTOXIN CCTX

• Molecule 2: alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-alpha-D-galactopyranose

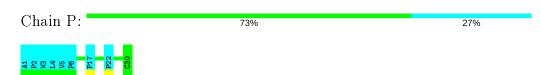
4.2.2 Score per residue for model 2

• Molecule 1: CONOTOXIN CCTX

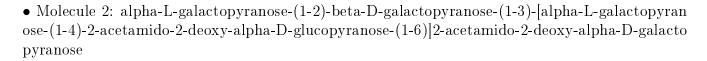
 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] 2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] 2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)[2-acet$

4.2.3 Score per residue for model 3 (medoid)

• Molecule 1: CONOTOXIN CCTX



 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \ 2-acetamido-2-deoxy-alpha-D-galactopyranose \ \, pyranose \ \,)$



4.2.4 Score per residue for model 4

• Molecule 1: CONOTOXIN CCTX

Chain A: 60% 20% 20%

4.2.5 Score per residue for model 5

• Molecule 1: CONOTOXIN CCTX

Chain P: 67% 7% 27%

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] 2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] 2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)[2-acetam$

Chain A: 60% 20% 20%

4.2.6 Score per residue for model 6

• Molecule 1: CONOTOXIN CCTX

Chain P: 67% . . 27%

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] 2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-4)-2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)-2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)-2-acetami$

Chain A: 40% 40% 20%

4.2.7 Score per residue for model 7

• Molecule 1: CONOTOXIN CCTX

A1 P2 W3 L4 V5 P6 P17 N28 C30

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alph$

4.2.8 Score per residue for model 8

• Molecule 1: CONOTOXIN CCTX

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] 2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] 2-acetamido-2-deoxy-alpha-D-galactopyranose \\ (1-6)[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)[2-acet$


4.2.9 Score per residue for model 9

• Molecule 1: CONOTOXIN CCTX

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \ 2-acetamido-2-deoxy-alpha-D-galactopyranose \ \, pyranose \ \,)$

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \ 2-acetamido-2-deoxy-alpha-D-galactopyranose \ \, pyranose \ \,)$

Chain A: 60% 20% 20%

4.2.13 Score per residue for model 13

• Molecule 1: CONOTOXIN CCTX

Chain P: 70% . 27%

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alph$

Chain A: 40% 40% 20%

4.2.14 Score per residue for model 14

• Molecule 1: CONOTOXIN CCTX

Chain P: 67% 7% 27%

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alph$

Chain A: 40% 40% 20%

4.2.15 Score per residue for model 15

• Molecule 1: CONOTOXIN CCTX

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alph$

Chain A: 60% 20% 20%

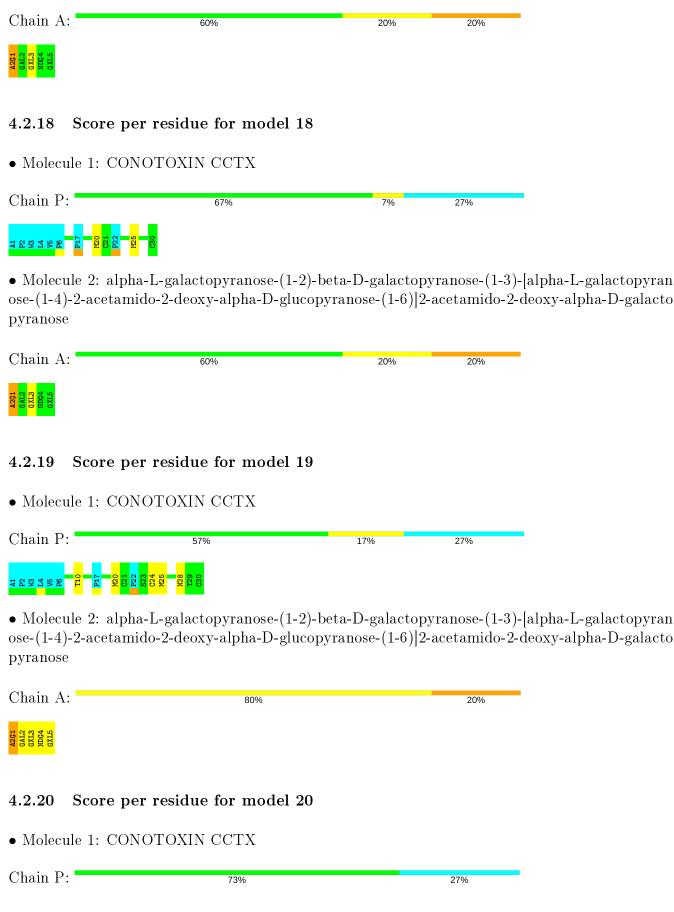
4.2.16 Score per residue for model 16

• Molecule 1: CONOTOXIN CCTX

Chain P: 73% 27%

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] \\ 2-acetamido-2-deoxy-al$

Chain A: 80% 20%


4.2.17 Score per residue for model 17

• Molecule 1: CONOTOXIN CCTX

 $\bullet \ \, Molecule \ 2: \ alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)] \ 2-acetamido-2-deoxy-alpha-D-galactopyranose \ \, pyranose \ \,)$

 $\bullet \ \, \text{Molecule 2: alpha-L-galactopyranose-(1-2)-beta-D-galactopyranose-(1-3)-[alpha-L-galactopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-6)]} \\ 2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-6)] \\ 2-acetamido-2-deoxy-alpha$

Chain A: 60% 20% 20%

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: CYANA AND CNS.

Of the 200 calculated structures, 20 were deposited, based on the following criterion: LEAST RESTRAINT VIOLATION.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CNS	refinement	
CcpNmr Analysis	structure solution	ANALYSIS

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	$working_cs.cif$
Number of chemical shift lists	1
Total number of shifts	353
Number of shifts mapped to atoms	350
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	3
Assignment completeness (well-defined parts)	72%

No validations of the models with respect to experimental NMR restraints is performed at this time.

6 Model quality (i)

6.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HYP, GXL, GAL, NDG, A2G

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	$\mathbf{H}(\mathbf{added})$	Clashes
1	Р	152	132	132	1±1
2	A	61	57	50	2±1
All	All	4260	3780	3640	45

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All unique clashes are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Clock (Å)	Distance (Å)	Models	
Atom-1	Atom-2	$\operatorname{Clash}(ext{Å})$	$\mathbf{Distance}(\mathbf{\mathring{A}})$	Worst	Total
2:A:1:A2G:H8B	2:A:3:GXL:H3	0.69	1.61	14	4
1:P:10:THR:HB	1:P:20:MET:HG3	0.68	1.64	6	4
2:A:1:A2G:C7	2:A:3:GXL:H3	0.64	2.22	18	11
1:P:8:GLN:OE1	2:A:5:GXL:HA	0.63	1.91	14	1
1:P:21:CYS:HB3	1:P:25:MET:SD	0.53	2.42	8	1
1:P:24:CYS:O	1:P:28:ASN:HA	0.52	2.05	1	2
2:A:1:A2G:H8B	2:A:3:GXL:C3	0.51	2.35	14	2
1:P:10:THR:O	1:P:20:MET:HG2	0.50	2.07	1	1
2:A:1:A2G:C8	2:A:3:GXL:H3	0.50	2.37	10	9
1:P:10:THR:HB	1:P:20:MET:SD	0.50	2.46	19	1
2:A:4:NDG:H6C2	2:A:5:GXL:H5	0.49	1.83	19	1

Continued on next page...

I 'omtamalad	trom	m_{COMO}	maaa
Continued	110116	DICUIUU0	Du/uc

Atom-1	Atom-2	Clash(Å)	$\mathbf{Distance}(\mathbf{\mathring{A}})$	${f Models}$	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:P:24:CYS:HA	1:P:29:THR:O	0.44	2.13	9	1
1:P:8:GLN:HB3	2:A:5:GXL:O2	0.43	2.13	13	1
2:A:4:NDG:H2	2:A:4:NDG:H8C1	0.42	1.63	11	1
1:P:12:CYS:O	1:P:15:TYR:HD1	0.42	1.98	15	1
1:P:24:CYS:HB2	1:P:30:CYS:HB3	0.42	1.61	1	1
2:A:2:GAL:O3	2:A:3:GXL:C1	0.41	2.69	6	1
1:P:16:ASN:HB2	1:P:19:THR:OG1	0.41	2.15	8	1
2:A:1:A2G:O3	2:A:3:GXL:H5	0.41	2.15	11	1

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Р	21/30 (70%)	18±1 (85±5%)	$3\pm1 \ (15\pm5\%)$	0±0 (0±1%)	50	82
All	All	420/600 (70%)	356 (85%)	63 (15%)	1 (0%)	50	82

All 1 unique Ramachandran outliers are listed below.

Mol	Chain	Res	Type	Models (Total)
1	Р	29	THR	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Analysed Rotameric		Percentiles	
1	Р	20/24 (83%)	20±0 (98±2%)	0±0 (2±2%)	53 92	
All	All	400/480 (83%)	391 (98%)	9 (2%)	53 92	

All 6 unique residues with a non-rotameric sidechain are listed below. They are sorted by the

frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	Р	28	ASN	3
1	Р	20	MET	2
1	Р	10	THR	1
1	Р	29	THR	1
1	Р	19	THR	1
1	Р	8	GLN	1

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

Mal	Tuno	Type Chain Res Link Bond len				gths	
WIOI	Type	Chain	res	LIIIK	Counts	RMSZ	#Z>2
1	HYP	Р	22	1	6,8,9	1.10 ± 0.00	0±0 (0±0%)
1	HYP	Р	2	1	6,8,9	1.13 ± 0.00	0±0 (0±0%)
1	HYP	Р	17	1	6,8,9	1.10 ± 0.00	0±0 (0±0%)

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles.

Mol	Tuno	Chain	Dog	Link		Bond ang	les
IVIOI	туре	Chain	nes	Lilik	Counts	RMSZ	#Z>2
1	HYP	Р	22	1	5,10,12	2.17 ± 0.00	0±0 (0±0%)
1	HYP	Р	2	1	5,10,12	1.01 ± 0.00	0±0 (0±0%)
1	HYP	Р	17	1	5,10,12	1.60 ± 0.00	$0\pm0 \ (0\pm0\%)$

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	${f Res}$	Link	Chirals	Torsions	Rings
1	HYP	Р	2	1	-	$0\pm0,0,11,13$	$0 \pm 0,1,1,1$
1	HYP	Р	17	1	-	$0\pm0,0,11,13$	$0\pm0,1,1,1$
1	HYP	Р	22	1	-	$0\pm0,0,11,13$	$0\pm0,1,1,1$

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

6.5 Carbohydrates (i)

5 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

Mol	Type	Chain	Dog	Link		Bond leng	${ m ths}$
MIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	#Z>2
2	A2G	A	1	1,2	14,14,15	0.69 ± 0.00	0±0 (0±0%)
2	GAL	A	2	2	11,11,12	0.51 ± 0.00	0±0 (0±0%)
2	GXL	A	3	2	11,11,12	0.66 ± 0.00	0±0 (0±0%)
2	NDG	A	4	2	14,14,15	0.72 ± 0.00	0±0 (0±0%)
2	GXL	A	5	2	11,11,12	0.49 ± 0.00	0±0 (0±0%)

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles.

Mol	Tuno	Chain	Pog	Link		Bond ang	les
IVIOI	\mathbf{Type}	Chain	nes	LIIIK	Counts	RMSZ	#Z>2
2	A2G	A	1	1,2	17,19,21	0.97 ± 0.00	0±0 (0±0%)
2	GAL	A	2	2	15,15,17	0.81 ± 0.00	0±0 (0±0%)
2	GXL	A	3	2	15,15,17	0.82 ± 0.00	0±0 (0±0%)
2	NDG	A	4	2	17,19,21	0.76 ± 0.00	0±0 (0±0%)
2	GXL	A	5	2	15,15,17	0.74 ± 0.00	0±0 (0±0%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	A2G	A	1	1,2	-	$0\pm0,6,23,26$	$0 \pm 0,1,1,1$
2	GAL	A	2	2	-	$0\pm0,2,19,22$	$0 \pm 0,1,1,1$
2	GXL	A	3	2	-	$0\pm0,2,19,22$	$0\pm0,1,1,1$
2	NDG	A	4	2	-	$0\pm0,6,23,26$	$0 \pm 0,1,1,1$
2	GXL	A	5	2	-	$0\pm0,2,19,22$	$0\pm0,1,1,1$

There are no bond-length outliers.

There are no bond-angle outliers.

All unique chiral outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Atoms	Models (Total)
2	A	2	GAL	C1	2
2	A	5	GXL	C1	1

There are no torsion outliers.

There are no ring outliers.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 72% for the well-defined parts and 74% for the entire structure.

7.1 Chemical shift list 1

File name: working_cs.cif

Chemical shift list name: 4b1q

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	353
Number of shifts mapped to atoms	350
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	3
Number of shift outliers (ShiftChecker)	0

The following assigned chemical shifts were not mapped to the molecules present in the coordinate file.

• No matching atoms found in structure. All 3 occurrences are reported below.

Chain	Res	Type	Atom	Shift Data		
Chain				Value	Uncertainty	Ambiguity
Р	22	HYP	CD2	58.179	0.007	1
Р	17	HYP	CD2	57.689	0.0	1
Р	2	HYP	CD2	57.688	0.0	1

7.1.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\bf Correction}\pm{\bf precision},ppm$	Suggested action
$^{13}\mathrm{C}_{\alpha}$	30	0.48 ± 0.33	None needed ($< 0.5 \text{ ppm}$)
$^{13}C_{\beta}$	28	0.70 ± 0.29	Should be applied
¹³ C'	0		None (insufficient data)
^{15}N	0		None (insufficient data)

7.1.3 Completeness of resonance assignments (i)

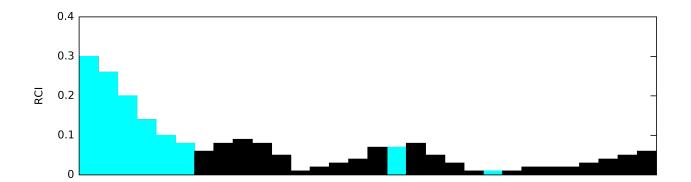
The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 72%, i.e. 154 atoms were assigned a chemical shift out of a possible 214. 0 out of 0 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	$66/110 \ (60\%)$	$44/44 \ (100\%)$	22/44 (50%)	0/22~(0%)
Sidechain	80/96 (83%)	52/57 (91%)	28/36 (78%)	$0/3 \ (0\%)$
Aromatic	8/8 (100%)	4/4~(100%)	4/4 (100%)	0/0 (%)
Overall	$154/214 \ (72\%)$	100/105~(95%)	54/84 (64%)	0/25~(0%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 74%, i.e. 207 atoms were assigned a chemical shift out of a possible 278. 2 out of 2 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	79/133~(59%)	52/53~(98%)	27/54~(50%)	$0/26 \ (0\%)$
Sidechain	109/125~(87%)	69/74~(93%)	40/48 (83%)	0/3 (0%)
Aromatic	$19/20 \ (95\%)$	$10/10 \; (100\%)$	9/9 (100%)	0/1 (0%)
Overall	$207/278 \ (74\%)$	131/137~(96%)	76/111~(68%)	0/30 (0%)

7.1.4 Statistically unusual chemical shifts (i)


There are no statistically unusual chemical shifts.

7.1.5 Random Coil Index (RCI) plots (i)

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain P:

