

Dec 18, 2022 – 06:14 pm GMT

PDB ID	:	7AR7
EMDB ID	:	EMD-11875
Title	:	Cryo-EM structure of Arabidopsis thaliana complex-I (open conformation)
Authors	:	Klusch, N.; Kuelbrandt, W.
Deposited on	:	2020-10-23
Resolution	:	3.72 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.72 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	;	Percentile Ranks	Value	
Ramachandran outliers			0.0%	
Sidechain outliers			0.1%	
	Worse		Better	
	Percentile relativ	ve to all structures		
	Percentile relativ	ve to all EM structures		
Metric		Whole archive	EM structures	
INICUIT.		(# Entries)	(# Entries)	

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<=5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain
1	А	119	16% 77% 23%
2	В	157	100%
3	С	185	100%
4	D	385	100%
5	Е	192	100%
6	F	434	14%
7	G	688	6%100%
8	Н	324	13%
9	Ι	169	• 100%

Chain Length Quality of chain Mol 7% 10 J 20567% 33% 9% Κ 11 88 99% 87% 12L 615100% 28% М 13487100% 9% 14Ν 488 100% 24% Р 15331100% 8% Q 1611999% 8% 17 \mathbf{R} 62100% 16% \mathbf{S} 93 18 99% 100% Т 1984 100% 95% U 2083 100% 11% \mathbf{V} 14021100% 41% 22W 13381% 19% 15% 23Х 96 100% 14% Ζ 2412599% 14% 2558 \mathbf{a} 100% 8% 26b 40 100% 78% 2776 \mathbf{c} 99% 7% 28 \mathbf{d} 7599% 6% 2964е 100% \mathbf{f} 30 100100% 53% 7231 g 100% 16% 3285 i 100% 98% 33 j 51100% 100% k 3447100%

Continued from previous page...

Mol	Chain	Length	Quality of chain
	-		96%
35	l	46	100%
		~	81%
36	m	67	100%
		100	98%
37	n	109	100%
		~~~	94%
38	0	80	100%
		0.0	54%
39	р	93	100%
10		60	52%
40	q	63	100%
41		10	50%
41	r	10	100%
40		20	47%
42	u	30	100%
4.9		20	20%
43	V	30	100%
4.4		014	30%
44	X	214	100%
45		969	40%
43	У	208	100%
16	_	0.00	30%
40	Z	233	100%

Continued from previous page...



# 2 Entry composition (i)

There are 59 unique types of molecules in this entry. The entry contains 60606 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	92	Total 785	C 556	N 108	0 117	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 2 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	157	Total 1244	C 797	N 218	0 215	S 14	0	0

• Molecule 3 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	185	Total 1581	C 1021	N 271	O 283	S 6	0	0

• Molecule 4 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	385	Total 3077	C 1954	N 542	O 557	S 24	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	70	LEU	SER	conflict	UNP P93306
D	227	SER	PRO	conflict	UNP P93306
D	309	LEU	SER	conflict	UNP P93306
D	363	SER	LEU	conflict	UNP P93306

• Molecule 5 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.



Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	192	Total 1500	C 954	N 248	O 287	S 11	0	0

• Molecule 6 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	434	Total 3368	C 2125	N 600	0 618	$\frac{S}{25}$	0	0

• Molecule 7 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 1, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
7	G	688	Total 5252	C 3291	N 921	O 1001	S 39	0	0

• Molecule 8 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	Н	324	Total 2536	C 1719	N 386	0 416	S 15	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	126	ARG	TRP	conflict	UNP P92558

• Molecule 9 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 8-A, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	Ι	169	Total 1381	C 869	N 234	O 268	S 10	0	0

• Molecule 10 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues	Atoms				AltConf	Trace	
10	Т	138	Total	С	Ν	Ο	$\mathbf{S}$	0	0
10	5	100	1093	742	168	175	8	0	0

• Molecule 11 is a protein called NADH-ubiquinone oxidoreductase chain 4L.



Mol	Chain	Residues	Atoms					AltConf	Trace
11	K	88	Total 692	C 466	N 107	0 112	${ m S} 7$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference	
K	44	LEU	SER	conflict	UNP Q04614	

• Molecule 12 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	L	615	Total 4807	C 3191	N 748	0 832	S 36	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
L	91	PHE	SER	conflict	UNP P29388
L	288	PHE	SER	conflict	UNP P29388
L	537	LEU	PRO	conflict	UNP P29388

• Molecule 13 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	М	487	Total 3887	C 2627	N 601	O 636	S 23	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	146	PHE	PRO	conflict	UNP P93313
М	326	LEU	PRO	conflict	UNP P93313
М	383	PHE	SER	conflict	UNP P93313

• Molecule 14 is a protein called NADH-ubiquinone oxidoreductase chain 2.

Mol	Chain	Residues		At		AltConf	Trace		
14	Ν	488	Total 3820	C 2573	N 577	0 642	S 28	0	0

• Molecule 15 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial.



Mol	Chain	Residues		At	AltConf	Trace			
15	Р	331	Total 2556	C 1641	N 438	O 462	S 15	0	0

• Molecule 16 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Q	119	Total 939	C 600	N 163	0 175	S 1	0	0

• Molecule 17 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial.

Mol	Chain	Residues		Ato	$\mathbf{ms}$			AltConf	Trace
17	R	62	Total 482	C 304	N 84	O 89	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	S	93	Total 728	C 459	N 129	0 134	$\frac{S}{6}$	0	0

• Molecule 19 is a protein called Acyl carrier protein 1, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Т	84	Total 667	C 421	N 105	0 138	${f S}\ 3$	0	0

• Molecule 20 is a protein called Acyl carrier protein 2, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	U	83	Total 650	C 411	N 103	0 135	S 1	0	0

• Molecule 21 is a protein called Probable NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	V	140	Total 1123	C 712	N 187	0 219	${ m S}{ m 5}$	0	0



• Molecule 22 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	W	108	Total 880	$\begin{array}{c} \mathrm{C} \\ 563 \end{array}$	N 156	0 158	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8-B.

Mol	Chain	Residues		At	toms			AltConf	Trace
23	Х	96	Total 763	C 478	N 131	0 142	S 12	0	0

• Molecule 24 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	Ζ	125	Total 997	C 640	N 175	0 177	${S \atop 5}$	0	0

• Molecule 25 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1.

Mol	Chain	Residues		Ato	$\mathbf{ms}$			AltConf	Trace
25	a	58	Total 470	C 302	N 84	O 79	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called At2g46540/F11C10.23.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	b	40	Total 295	C 195	N 48	O 49	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called Transmembrane protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	с	76	Total 617	C 396	N 115	O 100	S 6	0	0

• Molecule 28 is a protein called Excitatory amino acid transporter.



Mol	Chain	Residues		Ate	oms			AltConf	Trace
28	d	75	Total 592	C 382	N 106	O 99	${ m S}{ m 5}$	0	0

• Molecule 29 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 5-A.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
29	е	64	Total 546	C 338	N 102	O 99	${ m S} 7$	0	0

• Molecule 30 is a protein called At4g16450.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	f	100	Total 752	C 484	N 122	0 141	${ m S}{ m 5}$	0	0

• Molecule 31 is a protein called ESSS subunit of NADH:<br/>ubiquinone oxidoreductase (Complex I) protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	g	72	Total 586	C 379	N 100	0 104	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called At1g67350.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	i	85	Total 737	C 466	N 135	0 131	${f S}{5}$	0	0

• Molecule 33 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2.

Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
33	j	51	Total 415	C 275	N 73	O 64	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3-A.

Mol	Chain	Residues		Atc	$\mathbf{ms}$			AltConf	Trace
34	k	47	Total 374	C 238	N 71	O 62	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit



8, mitochondrial.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
35	1	46	Total 360	С 241	N 57	O 62	0	0

• Molecule 36 is a protein called AT2G31490 protein.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
36	m	67	Total 565	C 364	N 104	O 95	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 37 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	n	109	Total 911	C 580	N 170	O 160	S 1	0	0

• Molecule 38 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7.

Mol	Chain	Residues		$\mathbf{A}^{\dagger}$	AltConf	Trace			
38	О	80	Total 657	C 413	N 115	0 119	S 10	0	0

• Molecule 39 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	р	93	Total 778	C 493	N 144	0 137	${S \atop 4}$	0	0

• Molecule 40 is a protein called Probable NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
40	q	63	Total 520	C 332	N 92	O 96	0	0

• Molecule 41 is a protein called B14.5a.



Mol	Chain	Residues	L	Ator	ns	AltConf	Trace	
41	r	10	Total 87	C 58	N 17	O 12	0	0

• Molecule 42 is a protein called unknown.

Mol	Chain	Residues	Atoms				AltConf	Trace
42	u	30	Total 150	C 90	N 30	O 30	0	0

• Molecule 43 is a protein called Uncharacterized protein At2g27730, mitochondrial.

Mol	Chain	Residues		Atom	ıs	AltConf	Trace	
43	V	30	Total 226	C 147	N 39	O 40	0	0

• Molecule 44 is a protein called Gamma carbonic anhydrase-like 2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	х	214	Total 1659	C 1063	N 285	O 306	${ m S}{ m 5}$	0	0

• Molecule 45 is a protein called Gamma carbonic anhydrase 2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	У	268	Total 2032	C 1271	N 363	0 391	S 7	0	0

• Molecule 46 is a protein called Gamma carbonic anhydrase 1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	Z	233	Total 1772	C 1111	N 325	O 330	S 6	0	0

• Molecule 47 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula:  $Fe_4S_4$ ).





Mol	Chain	Residues	Atoms	AltConf
47	В	1	Total Fe S 8 4 4	0
47	F	1	TotalFeS844	0
47	G	1	Total Fe S 16 8 8	0
47	G	1	Total Fe S 16 8 8	0
47	Ι	1	Total Fe S 16 8 8	0
47	Ι	1	TotalFeS1688	0

• Molecule 48 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula:  $Fe_2S_2$ ).





Mol	Chain	Residues	Atoms	AltConf
18	F	1	Total Fe S	0
40	Ľ	1	4   2   2	0
18	С	1	Total Fe S	0
40	G		4   2   2	0

• Molecule 49 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula:  $C_{17}H_{21}N_4O_9P$ ).



Mol	Chain	Residues		Atoms					
40	Б	1	Total	С	Ν	Ο	Р	0	
49	49 F	T	31	17	4	9	1	0	

• Molecule 50 is Ubiquinone-9 (three-letter code: UQ9) (formula:  $C_{54}H_{82}O_4$ ).





Mol	Chain	Residues	Atoms	AltConf
50	Н	1	Total         C         O           35         31         4	0

• Molecule 51 is PHOSPHATIDYLETHANOLAMINE (three-letter code: PTY) (formula:  $C_{40}H_{80}NO_8P$ ).



Mol	Chain	Residues	Atoms	AltConf	
51	т	1	Total C N O	О Р	0
01	1	1	50 40 1 8	8 1	0
51	М	1	Total C N (	О Р	0
51	IVI	1	50 40 1 8	8 1	0



Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf
51	N	1	Total	С	Ν	0	Р	0
51	IN	L	50	40	1	8	1	0

• Molecule 52 is (7S)-4-HYDROXY-N,N,N-TRIMETHYL-9-OXO-7-[(PALMITOYLOXY)M ETHYL]-3,5,8-TRIOXA-4-PHOSPHAHEXACOSAN-1-AMINIUM 4-OXIDE (three-letter code: PC7) (formula: C₄₂H₈₅NO₈P).



	Mol	Chain	Residues	Atoms					AltConf
	59	М	1	Total	С	Ν	0	Р	0
	02 IVI	L	52	42	1	8	1	0	
	52 f	1	Total	С	Ν	0	Р	0	
		1	1	52	42	1	8	1	0

• Molecule 53 is Lauryl Maltose Neopentyl Glycol (three-letter code: LMN) (formula: C₄₇H₈₈O₂₂).





Mol	Chain	Residues	Atoms	AltConf
53	М	1	Total         C         O           69         47         22	0

• Molecule 54 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula:  $C_{21}H_{30}N_7O_{17}P_3$ ).



Mol	Chain	Residues	Atoms					AltConf
54	P	1	Total	С	Ν	Ο	Р	0
- 54	I	1	48	21	7	17	3	0

• Molecule 55 is ZINC ION (three-letter code: ZN) (formula: Zn).



Mol	Chain	Residues	Atoms	AltConf
55	R	1	Total Zn 1 1	0
55	У	1	Total Zn 1 1	0

• Molecule 56 is S-[2-({N-[(2R)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta-alan yl}amino)ethyl] dodecanethioate (three-letter code: 8Q1) (formula:  $C_{23}H_{45}N_2O_8PS$ ).



Mol	Chain	Residues	Atoms					AltConf	
56	W	1	Total	С	Ν	Ο	Р	$\mathbf{S}$	0
- 50 VV	vv	L	35	23	2	8	1	1	0
56	n	1	Total	С	Ν	Ο	Р	$\mathbf{S}$	0
06	п		35	23	2	8	1	1	0

• Molecule 57 is (1S)-2-{[{[(2R)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPH ORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL STEARATE (three-letter code: PGT) (formula: C₄₀H₇₉O₁₀P).





Mol	Chain	Residues	I	AltConf			
57	17	1	Total	С	Ο	Р	0
57	У	L	41	30	10	1	0

• Molecule 58 is 1,2-DICAPROYL-SN-PHOSPHATIDYL-L-SERINE (three-letter code: PSF) (formula:  $C_{18}H_{34}NO_{10}P$ ).



Mol	Chain	Residues	Atoms					AltConf
59	7	1	Total	С	Ν	Ο	Р	0
- 58	Z	T	30	18	1	10	1	0

• Molecule 59 is Phosphatidylinositol (three-letter code: T7X) (formula:  $C_{47}H_{83}O_{13}P$ ).





Mol	Chain	Residues	A	AltConf			
50	7	1	Total	С	Ο	Р	0
- 39	Z	T	61	47	13	1	0



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 3



• Molecule 2: NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial





• Molecule 6: NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial

	14%	_
Chain F:	100%	_
E51 K52 T53 H54 F55 G56	G57 L58 K69 F61 F61 F61 F61 F62 F84 F84 F84 F84 F84 F84 F84 F84 F84 F84	C211 C213 C213 E217 E217 K291 K291 K291 K291 C292 C303 C303 C303 C303 C303 C303 C303 C30
L319 K320 E321 E324 R325	C332 C332 C332 C332 C335 C4 C358 C4 C358 C4 C358 C4 C358 C4 C358 C4 C358 C4	
• Molecule	e 7: NADH dehydrogenase [ubiquinone] iron-sulfur protein 1, m	itochondrial
Chain G:	6%100%	-
R57	E71 K126 K126 K126 L236 E253 C354 R355 A415 A415 A419 A419 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433 K433	K593 K593 K613 C665 C665
D691 E692 R693 A696 A697 F698	F998 F704 E705 E705 K703 A709 M710 S711 1712 K744	
• Molecule	e 8: NADH-ubiquinone oxidoreductase chain 1	
	13%	_
Спапі п:	100%	
Y2 I3 A4 D54 P63	P63 164 965 965 965 965 966 867 869 869 869 8129 8129 8131 8209 8131 8209 8214 8209 8214 8209 8214 8213 8221 8221 8221 8221 8221 8221 8221	r.228 1255 1255 1255 1255 1259 1259 7260 K261 K262 K262
• Molecule	e 9: NADH dehydrogenase [ubiquinone] iron-sulfur protein 8-A,	mitochondrial
Chain I:	100%	
K54 E55 K58		
• Molecule	e 10: NADH-ubiquinone oxidoreductase chain 6	
	7%	
Chain J:	67% 33%	
M1 I2 R19 A20 K21	MYO HTS HTS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	N117 N118 N123 H172 R173 T174



99%

#### 

• Molecule 11: NADH-ubiquinone oxidoreductase chain 4L

Chain K:



• Molecule 12: NADH-ubiquinone oxidoreductase chain 5



• Molecule 13: NADH-ubiquinone oxidoreductase chain 4



• Molecule 16: NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial

Chain Q: 99%  $\cdot$ 

• Molecule 17: NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial



Chain R:	100%		
R48 S49 K50 N92 H109			
• Molecule 18: NADE	I dehydrogenase [ubiquinone]	1 alpha subcomplex subunit	5 2
Chain S:	99%		
A2 86 86 86 86 813 823 822 822 823 824 845	D65 E69 R70 A85 A94 A94		
• Molecule 19: Acyl o	carrier protein 1, mitochondria	મ	
Chain T:	100% 100%		
D38 D39 H40 L41 S42 B43 A45 A45 A45 V47 V47 V47 V47 V47	V50 L51 V52 V52 V53 S55 F57 F57 F57 F57 F58 S63 V60 V60 V60 V60 V60 V60 V60 V60 V60 V60	P67 E68 H70 F71 F71 F71 F71 C72 C75 C75 C75 C75 C76 C76 C76 C76 C76 C76 C77 C77 C77 C77	V83 E84 185 M87 M87 M87 M87 A88 A88 E91 F92 F93 F93 F93 F93 F93 F93 F93 F93 F93 F94 F94 F95 F95 F95 F95 F95 F95 F95 F95 F95 F95
P98 P98 K100 E101 A102 A102 K103 K103 T105 S107 S107 S109	L110		
• Molecule 20: Acyl o	earrier protein 2, mitochondria	ıl	
Chain U:	95% 100%		
F44 L45 D46 K47 S48 S48 E49 V50 V50 V52 R53 V54 V54 V54	S56 V57 V57 V58 V58 K65 F61 G65 K63 F66 F65 K68 K72 F71	A73 F75 F75 F75 076 076 076 076 078 078 082 082 082 082 082 083 083 586 586 586 586 586 588	V909 M91 A92 L93 E94 E95 F97 F99 F99 F99 F100 P102 D102
N104 E105 A106 A106 C107 C109 Q110 S111 C112 D113 A115	V116 D117 F118 A120 A120 S121 P123 Q124 A125 K126		
• Molecule 21: Proba chondrial	ble NADH dehydrogenase [ub	iquinone] 1 alpha subcomple	x subunit 5, mito-
Chain V:	100%		
A12 4 B24 4 E43 4 E49 4 E49 4 E72 4 D95 4	D114 Y115 G136 G136 B137 B137 B140 A151 A151		
• Molecule 22: NADE	I dehydrogenase [ubiquinone]	1 alpha subcomplex subunit	5 6
Chain W:	41% 81%	19%	





• Molecule 28: Excitatory amino acid transporter

Chain d:	99%	
• Molecule 29: NAI	OH dehydrogenase [ubiquinone] iron-sulfur protein 5-A	
Chain e:	100%	
A2 D33 Q62 K64 L65		
• Molecule 30: At4g	g16450	
Chain f:	100%	
M1 D17 E94 Q99 K100		
• Molecule 31: ESS	S subunit of NADH:ubiquinone oxidoreductase (Comple	ex I) protein
Chain g:	53%	
W32 A33 T34 G35 G35 G35 E38 E38 E39 E39 F41 F41	Y44 F45 M46 F48 F48 F48 F48 F53 F53 F53 F53 F53 F53 F53 F53 G54 F51 F71 F71 F71 F71 F71 F71 F71 F71 F71 F7	E99 R100 L101 E102 M103
• Molecule 32: At1g	z67350	
Chain i:	100%	
G2 F3 M5 M5 F7 A8 A8 L113 E17	E20 A5 B3 D85 N86	
• Molecule 33: NAI	OH dehydrogenase [ubiquinone] 1 beta subcomplex subu	nit 2
Chain j:	98% 100%	
<ul> <li>q9</li> <li>110</li> <li>111</li> <li>111</li> <li>112</li> <li>113</li> <li>114</li> <li>115</li> <li>118</li> <li>119</li> </ul>	P20 P20 V22 V22 P22 P22 P22 P22 P22 P22 P22 P22	G52 ♦ W53 ♦ H55 ♦ P56 ♦ W57 ♦ D58 ♦ C59 ♦
• Molecule 34: NAI	OH dehydrogenase [ubiquinone] 1 beta subcomplex subu	nit 3-A
Chain k:	100% 100%	
P4 L5 C6 C6 T7 T7 C9 E10 F11 F11 F11	R.15 E.17 E.17 K.19 K.20 H.21 F.22 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.25 R.23 R.24 R.23 R.25 R.24 R.24 R.23 R.25 R.24 R.25 R.25 R.25 R.25 R.25 R.25 R.25 R.25	V47 G48 E49 Q50
	WORLDWIDE	

PROTEIN DATA BANK

• Molecule 35: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial



	52%			
Chain q:		100%		
648 A49 K56 K56 F57 K56 K56 C58 C58 C58 C66 C66 C66 C66 C66	q69 Y70 G71 R72 H73 H73 C57 X79 A79 S80	D102	D106 E107 L108 L109 S110	
• Molecule 41: B14.5	a			
Chain r:	50%	100%		
P82 P83 184 R85 R85 Y87 Y87 K91				
• Molecule 42: unkno	wn			
Chain u:	47%	100%		
X1 X2 X3 X4 X10 X10 X13 X13 X13 X13 X15	X26 X27 X28 X29 X30			
• Molecule 43: Uncha	racterized protein	At2g27730, mitocho	ondrial	
Chain v:	-	100%		
P74 K75 E78 D79 K80 K80 N83 A103				
• Molecule 44: Gamm	na carbonic anhyd	rase-like 2, mitochor	ndrial	
Chain x:		100%		
P41 K42 S43 944 945 P47 P47 P49 P49 P49 P49 P49 P51 P50	R57 R57 G58 Q59 Q59 Q67 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65	D75 R103 G104 B105 R120 A126 V127 S128 S128	P130 4 T131 6 0132 6 1133 6 1135 6 1150 6 1150 6	1167 ♦ E170 ♦ S173 ♦ A182 ♦ V185
G199 G200 G200 A203 A203 A203 F206 R207 T208 L209 T208 T210 8 211 €	E213 + E216 + K219 + L220 + C229 + C229 + C229 + C2230 + C2230 + C2244 +	E245 E246 K247 K250 S251 L252 G253 I254		
• Molecule 45: Gamm	na carbonic anhyd	rase 2, mitochondria	1	
Chain y:	40%	100%		
C2 L22 D23 R24 G31 G31 G31 G31 M47 M47 V48	F49 D50 X61 X61 P53 P53 P53 P53 V67 K57	K75 G76 179 188 100 100 100 100 1100	T111 N112 S113 S114 G115 K116 V117 L118 P119	1121 ← 1122 ← N125 ← S131 ← A132 ← C137 ← D141 ← D143 ←
• •• ••• •• •				
F14 A14 115 115 115 115 115 615 615 615 615 7 615 7 416 416 416 416 416 416 416 416 416 7 416 416 7 416 416 7 417 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10	A16 G16 S16 L16 V16 V16 V16 V16 V16 V16 V17 O17 177 R177 R177	P17( 517 6178 6178 6178 6178 6188 7186 7186 71	R196 K191 L195 L195 E196 E196 E196 V198	119 1200 1200 1200 1200 1200 1200 1200 1





• Molecule 46: Gamma carbonic anhydrase 1, mitochondrial





# 4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	48933	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	43	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 ( $6k \ge 4k$ )	Depositor
Maximum map value	0.119	Depositor
Minimum map value	-0.037	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.001	Depositor
Recommended contour level	0.011	Depositor
Map size (Å)	502.2, 502.2, 502.2	wwPDB
Map dimensions	600, 600, 600	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.837,  0.837,  0.837	Depositor



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NDP, UQ9, ZN, PGT, SF4, FMN, LMN, PC7, PSF, FES, 8Q1, T7X, PTY

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	$\mathbf{lengths}$	Bo	ond angles
WIOI	Unam	RMSZ	# Z  > 5	RMSZ	# Z  > 5
1	А	0.28	0/813	0.46	0/1103
2	В	0.27	0/1279	0.48	0/1734
3	С	0.27	0/1629	0.52	0/2207
4	D	0.27	0/3147	0.52	0/4256
5	Ε	0.26	0/1535	0.48	0/2084
6	F	0.26	0/3441	0.51	0/4641
7	G	0.26	0/5347	0.51	0/7242
8	Н	0.28	0/2609	0.52	1/3553~(0.0%)
9	Ι	0.28	0/1410	0.53	0/1904
10	J	0.26	0/1118	0.46	0/1523
11	Κ	0.26	0/702	0.50	0/948
12	L	0.26	0/4938	0.49	0/6706
13	М	0.27	0/3996	0.48	0/5431
14	Ν	0.27	0/3924	0.47	0/5327
15	Р	0.26	0/2613	0.53	1/3539~(0.0%)
16	Q	0.27	0/966	0.50	1/1305~(0.1%)
17	R	0.26	0/493	0.49	0/668
18	S	0.25	0/740	0.52	0/996
19	Т	0.23	0/679	0.43	0/922
20	U	0.25	0/660	0.47	0/892
21	V	0.25	0/1146	0.48	0/1555
22	W	0.26	0/899	0.51	0/1218
23	Х	0.27	0/777	0.51	0/1044
24	Ζ	0.26	0/1027	0.54	0/1392
25	а	0.25	0/482	0.51	0/646
26	b	0.26	0/300	0.53	0/407
27	с	0.24	0/637	0.52	1/860~(0.1%)
28	d	0.26	0/605	0.54	1/815~(0.1%)
29	е	0.25	0/559	0.50	0/745
30	f	0.28	0/768	0.47	0/1038
31	g	0.24	0/606	0.50	0/826
32	i	0.26	0/757	0.52	0/1019



Mal	Chain	Bond	lengths	Bo	ond angles
1VIOI	Unam	RMSZ	# Z  > 5	RMSZ	# Z  > 5
33	j	0.23	0/433	0.44	0/592
34	k	0.24	0/384	0.57	0/515
35	1	0.25	0/370	0.44	0/504
36	m	0.24	0/580	0.50	0/778
37	n	0.24	0/938	0.49	0/1273
38	0	0.28	0/666	0.60	0/886
39	р	0.25	0/799	0.49	0/1074
40	q	0.25	0/537	0.48	0/728
41	r	0.19	0/89	0.41	0/119
43	V	0.22	0/230	0.43	0/311
44	Х	0.26	0/1700	0.54	1/2320~(0.0%)
45	У	0.25	0/2066	0.50	0/2800
46	Z	0.26	0/1804	0.52	0/2441
All	All	0.26	0/61198	0.50	6/82887~(0.0%)

There are no bond length outliers.

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	Н	204	ASP	CB-CG-OD2	6.32	123.98	118.30
16	Q	46	PRO	CA-N-CD	-6.27	102.72	111.50
44	Х	185	VAL	C-N-CA	-5.59	107.72	121.70
15	Р	363	LEU	CA-CB-CG	5.38	127.67	115.30
28	d	56	LEU	CA-CB-CG	5.28	127.44	115.30
27	с	58	LEU	CA-CB-CG	5.04	126.88	115.30

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.



Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	88/119~(74%)	86~(98%)	2(2%)	0	100	100
2	В	155/157~(99%)	142 (92%)	13 (8%)	0	100	100
3	С	183/185~(99%)	174 (95%)	9~(5%)	0	100	100
4	D	383/385~(100%)	356~(93%)	27 (7%)	0	100	100
5	Ε	190/192~(99%)	170 (90%)	20 (10%)	0	100	100
6	F	432/434~(100%)	408 (94%)	24 (6%)	0	100	100
7	G	686/688~(100%)	637~(93%)	49 (7%)	0	100	100
8	Н	322/324~(99%)	291 (90%)	31 (10%)	0	100	100
9	Ι	167/169~(99%)	162 (97%)	5 (3%)	0	100	100
10	J	134/205~(65%)	131 (98%)	3 (2%)	0	100	100
11	K	86/88~(98%)	85 (99%)	0	1 (1%)	13	48
12	L	613/615~(100%)	559 (91%)	54 (9%)	0	100	100
13	М	485/487 (100%)	465 (96%)	20 (4%)	0	100	100
14	Ν	486/488 (100%)	466 (96%)	20 (4%)	0	100	100
15	Р	329/331~(99%)	309 (94%)	20 (6%)	0	100	100
16	Q	117/119~(98%)	109 (93%)	8 (7%)	0	100	100
17	R	60/62~(97%)	59 (98%)	1 (2%)	0	100	100
18	S	91/93~(98%)	82 (90%)	9 (10%)	0	100	100
19	Т	82/84~(98%)	80 (98%)	2 (2%)	0	100	100
20	U	81/83~(98%)	76 (94%)	5 (6%)	0	100	100
21	V	138/140~(99%)	134 (97%)	4 (3%)	0	100	100
22	W	104/133~(78%)	100 (96%)	4 (4%)	0	100	100
23	Х	94/96~(98%)	89 (95%)	5 (5%)	0	100	100
24	Z	123/125~(98%)	114 (93%)	8 (6%)	1 (1%)	19	56
25	a	56/58~(97%)	56 (100%)	0	0	100	100
26	b	38/40~(95%)	37 (97%)	1 (3%)	0	100	100
27	с	74/76~(97%)	59 (80%)	15 (20%)	0	100	100
28	d	73/75~(97%)	71 (97%)	2 (3%)	0	100	100
29	е	62/64~(97%)	60 (97%)	2 (3%)	0	100	100
30	f	98/100 (98%)	94 (96%)	4 (4%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
31	g	70/72~(97%)	65~(93%)	5 (7%)	0	100	100
32	i	83/85~(98%)	77 (93%)	6 (7%)	0	100	100
33	j	49/51~(96%)	45 (92%)	4 (8%)	0	100	100
34	k	45/47~(96%)	39 (87%)	6 (13%)	0	100	100
35	1	44/46~(96%)	43 (98%)	1 (2%)	0	100	100
36	m	65/67~(97%)	62 (95%)	3 (5%)	0	100	100
37	n	107/109~(98%)	98 (92%)	9 (8%)	0	100	100
38	О	78/80~(98%)	70 (90%)	8 (10%)	0	100	100
39	р	91/93~(98%)	86 (94%)	5 (6%)	0	100	100
40	q	61/63~(97%)	53 (87%)	8 (13%)	0	100	100
41	r	8/10 (80%)	7 (88%)	1 (12%)	0	100	100
43	v	28/30~(93%)	27 (96%)	1 (4%)	0	100	100
44	x	212/214~(99%)	196 (92%)	16 (8%)	0	100	100
45	У	266/268~(99%)	239 (90%)	27 (10%)	0	100	100
46	Z	231/233~(99%)	212 (92%)	19 (8%)	0	100	100
All	All	7468/7683~(97%)	6980 (94%)	486 (6%)	2(0%)	100	100

Continued from previous page...

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
11	Κ	28	ILE
24	Ζ	120	VAL

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	84/106~(79%)	84 (100%)	0	100	100
2	В	132/132~(100%)	132 (100%)	0	100	100
3	С	175/175~(100%)	175 (100%)	0	100	100



Continued	from	previous	page
00100000000	J. 00	proceed as	<i>p ag o m</i>

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	D	331/331~(100%)	331 (100%)	0	100	100
5	Ε	166/166~(100%)	166 (100%)	0	100	100
6	F	353/353~(100%)	353~(100%)	0	100	100
7	G	571/571~(100%)	570 (100%)	1 (0%)	93	97
8	Н	271/271~(100%)	271 (100%)	0	100	100
9	Ι	151/151 (100%)	151 (100%)	0	100	100
10	J	123/186~(66%)	123 (100%)	0	100	100
11	K	76/76~(100%)	76 (100%)	0	100	100
12	L	518/518 (100%)	516 (100%)	2(0%)	91	95
13	М	426/426 (100%)	425 (100%)	1 (0%)	93	97
14	Ν	406/406 (100%)	406 (100%)	0	100	100
15	Р	273/273~(100%)	273 (100%)	0	100	100
16	Q	100/100~(100%)	100 (100%)	0	100	100
17	R	55/55~(100%)	55 (100%)	0	100	100
18	S	82/82~(100%)	81 (99%)	1 (1%)	71	84
19	Т	79/79~(100%)	79 (100%)	0	100	100
20	U	75/75~(100%)	75 (100%)	0	100	100
21	V	123/123~(100%)	123 (100%)	0	100	100
22	W	96/114 (84%)	96 (100%)	0	100	100
23	Х	87/87~(100%)	87 (100%)	0	100	100
24	Z	100/100~(100%)	100 (100%)	0	100	100
25	a	48/48 (100%)	48 (100%)	0	100	100
26	b	33/33~(100%)	33 (100%)	0	100	100
27	с	66/66~(100%)	66 (100%)	0	100	100
28	d	60/60~(100%)	60 (100%)	0	100	100
29	е	59/59~(100%)	59 (100%)	0	100	100
30	f	80/80~(100%)	80 (100%)	0	100	100
31	g	62/62~(100%)	62 (100%)	0	100	100
32	i	77/77~(100%)	77 (100%)	0	100	100
33	j	42/42~(100%)	42 (100%)	0	100	100
34	k	38/38~(100%)	38 (100%)	0	100	100



Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
35	1	37/37~(100%)	37~(100%)	0	100	100
36	m	58/58~(100%)	58 (100%)	0	100	100
37	n	92/92~(100%)	92 (100%)	0	100	100
38	О	70/70~(100%)	70 (100%)	0	100	100
39	р	83/83~(100%)	83 (100%)	0	100	100
40	q	52/52~(100%)	52 (100%)	0	100	100
41	r	10/10~(100%)	10 (100%)	0	100	100
43	v	23/23~(100%)	23~(100%)	0	100	100
44	х	183/183~(100%)	183 (100%)	0	100	100
45	У	223/223~(100%)	223 (100%)	0	100	100
46	Z	188/188 (100%)	188 (100%)	0	100	100
All	All	6437/6540~(98%)	6432 (100%)	5 (0%)	93	98

Continued from previous page...

All (5) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
7	G	613	ARG
12	L	330	ASN
12	L	608	ARG
13	М	495	HIS
18	S	15	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	Res	Type
4	D	113	ASN
12	L	97	HIS
12	L	560	ASN
18	S	88	ASN
27	с	60	GLN
43	V	83	ASN
44	Х	81	ASN
44	Х	116	ASN
45	У	107	HIS
45	У	135	HIS
46	Z	112	ASN
46	Z	130	HIS



#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 24 ligands modelled in this entry, 2 are monoatomic - leaving 22 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	B	ond leng	$\operatorname{gths}$	B	ond ang	les
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
52	PC7	f	201	30	51,51,51	0.96	4 (7%)	57,59,59	1.03	2 (3%)
54	NDP	Р	500	15	45,52,52	2.25	4 (8%)	53,80,80	1.75	9 (16%)
47	SF4	G	802	7	0,12,12	-	-	-		
47	SF4	Ι	301	9	0,12,12	-	-	-		
47	SF4	Ι	302	9	0,12,12	-	-	-		
53	LMN	М	503	-	72,72,72	1.67	13 (18%)	96,98,98	1.11	4 (4%)
49	FMN	F	500	-	33,33,33	1.08	2 (6%)	48,50,50	1.22	8 (16%)
56	8Q1	W	200	-	31,34,34	1.70	6 (19%)	40,43,43	1.52	4 (10%)
47	SF4	F	501	6	0,12,12	-	-	-		
57	PGT	У	302	-	40,40,50	1.17	3 (7%)	43,46,56	1.09	2 (4%)
59	T7X	Z	302	-	61,61,61	0.84	4 (6%)	71,73,73	1.04	2 (2%)
50	UQ9	Н	500	8	35,35,58	2.55	12 (34%)	42,45,73	1.59	9 (21%)
52	PC7	М	501	12,13	51,51,51	0.96	4 (7%)	57,59,59	1.09	2 (3%)
47	SF4	В	500	2	0,12,12	-	-	-		
51	PTY	N	501	14	49,49,49	0.87	4 (8%)	52,54,54	1.08	2 (3%)



Mal	Mol Type Chain		Dec	Tink	B	Bond lengths			Bond angles		
MOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z >2	
51	PTY	М	502	13	49,49,49	0.88	4 (8%)	52,54,54	1.10	2 (3%)	
58	PSF	Z	301	46	28,29,29	1.18	4 (14%)	32,36,36	1.24	2(6%)	
51	PTY	Ι	303	9	49,49,49	0.87	4 (8%)	52,54,54	1.08	2(3%)	
48	FES	G	801	7	0,4,4	-	-	-			
47	SF4	G	803	7	0,12,12	-	-	-			
48	FES	Е	500	5	0,4,4	-	-	-			
56	8Q1	n	200	37	31,34,34	1.71	6 (19%)	40,43,43	1.50	5 (12%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
52	PC7	f	201	30	-	26/55/55/55	-
54	NDP	Р	500	15	-	4/30/77/77	0/5/5/5
47	SF4	G	802	7	-	-	0/6/5/5
47	SF4	Ι	301	9	-	-	0/6/5/5
47	SF4	Ι	302	9	-	-	0/6/5/5
53	LMN	М	503	-	-	35/50/130/130	0/4/4/4
49	FMN	F	500	-	-	7/18/18/18	0/3/3/3
56	8Q1	W	200	-	-	21/41/41/41	-
47	SF4	F	501	6	-	-	0/6/5/5
57	PGT	У	302	-	-	27/45/45/55	-
59	T7X	Z	302	-	-	24/56/80/80	0/1/1/1
50	UQ9	Н	500	8	-	4/30/54/81	0/1/1/1
52	PC7	М	501	12,13	-	20/55/55/55	-
47	SF4	В	500	2	-	-	0/6/5/5
51	PTY	Ν	501	14	-	27/53/53/53	-
51	PTY	М	502	13	-	24/53/53/53	-
58	PSF	Z	301	46	-	11/35/35/35	-
51	PTY	Ι	303	9	-	22/53/53/53	-
48	FES	G	801	7	-	-	0/1/1/1
47	SF4	G	803	7	-	-	0/6/5/5
48	FES	Е	500	5	-	-	0/1/1/1
56	8Q1	n	200	37	_	7/41/41/41	-

All (74) bond length outliers are listed below:



Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
54	Р	500	NDP	P2B-O2B	12.51	1.82	1.59
50	Н	500	UQ9	C6-C1	10.23	1.53	1.35
56	W	200	8Q1	C34-N36	5.55	1.45	1.33
56	n	200	8Q1	C34-N36	5.52	1.45	1.33
56	n	200	8Q1	C39-N41	5.38	1.45	1.33
56	W	200	8Q1	C39-N41	5.32	1.45	1.33
53	М	503	LMN	O5-C1	4.76	1.54	1.41
50	Н	500	UQ9	C4-C3	4.33	1.53	1.36
53	М	503	LMN	CBS-CCM	4.31	1.63	1.53
50	Н	500	UQ9	C7-C8	4.25	1.56	1.50
54	Р	500	NDP	PN-O5D	4.19	1.76	1.59
53	М	503	LMN	CBT-CCM	4.18	1.63	1.53
53	М	503	LMN	CBR-CCM	3.73	1.61	1.54
49	F	500	FMN	C4A-N5	3.72	1.38	1.30
53	М	503	LMN	O1-C1	-3.36	1.34	1.40
57	у	302	PGT	O3-C11	3.07	1.42	1.33
57	у	302	PGT	O2-C31	2.96	1.42	1.34
53	М	503	LMN	OBZ-CCS	2.92	1.49	1.41
53	М	503	LMN	OBY-CCR	2.90	1.49	1.41
54	Р	500	NDP	O2B-C2B	-2.89	1.33	1.44
53	М	503	LMN	O4-C4	2.82	1.51	1.43
53	М	503	LMN	OBX-CCF	2.68	1.50	1.44
50	Н	500	UQ9	C11-C9	2.60	1.56	1.51
50	Н	500	UQ9	C7-C6	2.60	1.55	1.51
52	f	201	PC7	O2-C2	-2.58	1.40	1.46
51	Ι	303	PTY	O7-C6	-2.55	1.40	1.46
51	М	502	PTY	O7-C6	-2.53	1.40	1.46
58	Z	301	PSF	O11-C3	-2.53	1.40	1.46
52	М	501	PC7	O2-C2	-2.52	1.40	1.46
49	F	500	FMN	C10-N1	2.51	1.38	1.33
53	М	503	LMN	OBX-CCJ	2.47	1.48	1.41
50	Η	500	UQ9	C16-C14	2.47	1.56	1.51
56	W	200	8Q1	C1-S44	2.46	1.82	1.76
56	n	200	8Q1	C1-S44	2.45	1.82	1.76
51	Ν	501	PTY	O4-C30	2.41	1.40	1.33
58	Z	301	PSF	O52-C5	2.40	1.40	1.33
52	М	501	PC7	O3-C11	2.40	1.40	1.33
50	Н	500	UQ9	C21-C19	2.40	1.56	1.51
50	Н	500	UQ9	$C2\overline{6}-C24$	2.40	1.56	1.51
59	Z	302	T7X	018-C11	2.39	1.40	1.33
51	Ι	303	PTY	O4-C30	2.39	1.40	1.33
51	М	502	PTY	O4-C30	2.39	1.40	1.33
52	f	201	PC7	O3-C11	2.37	1.40	1.33



Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
59	Z	302	T7X	O16-C10	2.30	1.40	1.34
50	Н	500	UQ9	O4-C4M	-2.28	1.39	1.45
56	n	200	8Q1	C6-C1	2.27	1.53	1.50
53	М	503	LMN	C3-C4	-2.26	1.46	1.52
51	N	501	PTY	O7-C8	2.25	1.40	1.34
56	W	200	8Q1	O40-C39	-2.22	1.18	1.23
57	У	302	PGT	P-O3P	2.21	1.68	1.59
51	N	501	PTY	O7-C6	-2.21	1.41	1.46
52	f	201	PC7	O3-C3	-2.20	1.40	1.45
51	Ι	303	PTY	O4-C1	-2.19	1.40	1.45
56	n	200	8Q1	O35-C34	-2.19	1.19	1.23
56	W	200	8Q1	O35-C34	-2.18	1.19	1.23
52	М	501	PC7	O3-C3	-2.18	1.40	1.45
59	Z	302	T7X	O16-C8	-2.17	1.41	1.46
53	М	503	LMN	O5-C5	2.17	1.49	1.44
51	М	502	PTY	O4-C1	-2.17	1.40	1.45
52	М	501	PC7	O2-C31	2.16	1.40	1.34
52	f	201	PC7	O2-C31	2.16	1.40	1.34
51	N	501	PTY	O4-C1	-2.15	1.40	1.45
56	n	200	8Q1	O40-C39	-2.15	1.18	1.23
50	Н	500	UQ9	C6-C5	2.15	1.52	1.46
51	М	502	PTY	O7-C8	2.14	1.40	1.34
58	Z	301	PSF	O11-C1	2.14	1.40	1.34
58	Z	301	PSF	O52-C4	-2.13	1.40	1.45
51	Ι	303	PTY	O7-C8	2.12	1.40	1.34
56	W	200	8Q1	C6-C1	2.12	1.53	1.50
59	Z	302	T7X	O18-C9	-2.11	1.40	1.45
53	М	503	LMN	CBQ-CCM	2.11	1.58	1.54
54	Р	500	NDP	C2A-N1A	2.09	1.37	1.33
50	Н	500	UQ9	O5-C5	-2.06	1.18	1.23
50	Н	500	UQ9	C17-C18	2.05	1.57	1.50

Continued from previous page...

All (55) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
54	Р	500	NDP	PN-O3-PA	-7.18	108.20	132.83
56	n	200	8Q1	C6-C1-S44	5.55	119.92	113.46
56	W	200	8Q1	C6-C1-S44	5.43	119.78	113.46
50	Н	500	UQ9	C7-C8-C9	-4.16	119.86	126.79
59	Z	302	T7X	O16-C10-C12	4.13	120.41	111.50
52	М	501	PC7	O2-C31-C32	4.12	120.38	111.50
51	М	502	PTY	O7-C8-C11	4.03	120.19	111.50



Continued	from	previous	page
• • • • • • • • • • • •	J	1	Fagann

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	Ν	501	PTY	O7-C8-C11	4.01	120.14	111.50
58	Z	301	PSF	O11-C1-C13	3.99	120.11	111.50
57	у	302	PGT	O2-C31-C32	3.99	120.10	111.50
52	f	201	PC7	O2-C31-C32	3.93	119.97	111.50
53	М	503	LMN	CCR-O4-C4	-3.88	108.35	117.96
51	Ι	303	PTY	O7-C8-C11	3.84	119.78	111.50
56	W	200	8Q1	O4-C1-C6	-3.59	119.75	123.99
56	n	200	8Q1	O4-C1-C6	-3.33	120.06	123.99
54	Р	500	NDP	O2B-P2B-O1X	-3.32	96.58	109.39
50	Н	500	UQ9	C12-C13-C14	-3.21	119.94	127.66
49	F	500	FMN	C4-N3-C2	-3.15	119.83	125.64
50	Н	500	UQ9	C17-C18-C19	-3.13	120.13	127.66
54	Р	500	NDP	PA-O5B-C5B	-3.02	104.00	121.68
54	Р	500	NDP	PN-O5D-C5D	-2.96	104.33	121.68
50	Н	500	UQ9	C27-C26-C24	-2.80	110.04	114.62
53	М	503	LMN	CCS-OCB-CCQ	-2.79	111.06	117.96
50	Н	500	UQ9	C15-C14-C16	2.77	119.94	115.27
50	Н	500	UQ9	C22-C23-C24	-2.77	120.98	127.66
50	Н	500	UQ9	C25-C24-C26	2.75	119.90	115.27
49	F	500	FMN	C4A-C4-N3	2.72	120.10	113.19
49	F	500	FMN	O4-C4-C4A	-2.70	119.42	126.60
50	Н	500	UQ9	C20-C19-C21	2.68	119.79	115.27
51	М	502	PTY	O4-C30-C31	2.66	120.26	111.91
56	W	200	8Q1	C43-S44-C1	2.66	110.14	101.87
54	Р	500	NDP	O5D-PN-O1N	-2.65	98.71	109.07
54	Р	500	NDP	O2N-PN-O1N	2.62	125.17	112.24
51	Ι	303	PTY	O4-C30-C31	2.61	120.10	111.91
51	Ν	501	PTY	O4-C30-C31	2.59	120.05	111.91
59	Z	302	T7X	O18-C11-C31	2.57	119.96	111.91
52	М	501	PC7	O3-C11-C12	2.56	119.94	111.91
58	Z	301	PSF	O52-C5-C6	2.55	119.92	111.91
54	Р	500	NDP	O3X-P2B-O2X	2.54	117.34	107.64
57	у	302	PGT	O3-C11-C12	2.53	119.86	111.91
50	Н	500	UQ9	C10-C9-C11	2.49	119.45	115.27
52	f	201	PC7	O3-C11-C12	2.42	119.52	111.91
54	Р	500	NDP	C2A-N1A-C6A	-2.34	114.75	118.75
56	n	200	8Q1	C43-S44-C1	2.32	109.11	101.87
49	F	500	FMN	C4A-C10-N1	-2.28	119.43	124.73
49	F	500	FMN	C4A-C10-N10	2.27	119.80	116.48
56	W	200	$8\overline{\mathrm{Q1}}$	C38-C39-N41	2.27	120.24	116.42
49	F	500	FMN	C9A-C5A-N5	-2.27	119.97	122.43
49	F	500	FMN	C5A-C9A-N10	2.23	$1\overline{20.25}$	117.95



Mol	Chain	$\mathbf{Res}$	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
54	Р	500	NDP	C5D-C4D-C3D	-2.20	106.94	115.18
53	М	503	LMN	OBX-CCF-CCQ	2.19	114.37	109.75
53	М	503	LMN	OBX-CCJ-CCL	2.12	114.83	110.35
49	F	500	FMN	C10-C4A-N5	-2.09	120.43	124.86
56	n	200	8Q1	C38-C39-N41	2.06	119.89	116.42
56	n	200	8Q1	O4-C1-S44	-2.00	120.02	122.61

Continued from previous page...

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
49	F	500	FMN	N10-C1'-C2'-O2'
49	F	500	FMN	N10-C1'-C2'-C3'
49	F	500	FMN	C1'-C2'-C3'-O3'
49	F	500	FMN	C1'-C2'-C3'-C4'
50	Н	500	UQ9	C9-C11-C12-C13
50	Н	500	UQ9	C12-C11-C9-C10
50	Н	500	UQ9	C12-C11-C9-C8
51	Ι	303	PTY	N1-C2-C3-O11
51	Ι	303	PTY	O14-C5-C6-O7
51	Ι	303	PTY	C5-O14-P1-O13
51	М	502	PTY	O10-C8-O7-C6
51	М	502	PTY	C11-C8-O7-C6
51	М	502	PTY	C5-O14-P1-O13
51	N	501	PTY	O10-C8-O7-C6
51	Ν	501	PTY	C3-O11-P1-O13
51	N	501	PTY	C3-O11-P1-O14
51	N	501	PTY	C5-O14-P1-O13
52	М	501	PC7	C4-O4P-P-O1P
52	М	501	PC7	C4-O4P-P-O2P
52	М	501	PC7	O4P-C4-C5-N
52	f	201	PC7	C32-C31-O2-C2
52	f	201	PC7	O31-C31-O2-C2
52	f	201	PC7	O2-C2-C3-O3
52	f	201	PC7	C4-O4P-P-O1P
52	f	201	PC7	C5-C4-O4P-P
53	М	503	LMN	O5-C1-O1-CBS
53	M	503	LMN	CBK-CBQ-CCM-CBR
53	М	503	LMN	CBK-CBQ-CCM-CBS
53	М	503	LMN	CBK-CBQ-CCM-CBT
53	М	503	LMN	CBL-CBR-CCM-CBQ
53	М	503	LMN	OBV-CBT-CCM-CBQ

All (259) torsion outliers are listed below:



EMD-11875, 7A	AR7
---------------	-----

Contr	nuea fron	i previ	ous page	•••
Mol	Chain	Res	Type	Atoms
53	М	503	LMN	OBV-CBT-CCM-CBR
53	М	503	LMN	OBX-CCJ-OBV-CBT
53	М	503	LMN	CCL-CCJ-OBV-CBT
54	Р	500	NDP	C5B-O5B-PA-O3
56	W	200	8Q1	S44-C1-C6-C7
56	W	200	8Q1	O4-C1-S44-C43
56	W	200	8Q1	C6-C1-S44-C43
56	W	200	8Q1	C28-C29-C32-C34
56	W	200	8Q1	C31-C29-C32-C34
56	W	200	8Q1	C29-C32-C34-N36
56	W	200	8Q1	C29-C32-C34-O35
56	W	200	8Q1	O33-C32-C34-N36
56	W	200	8Q1	N36-C37-C38-C39
56	W	200	8Q1	C28-O27-P24-O2
56	W	200	8Q1	C28-O27-P24-O1
56	n	200	8Q1	O27-C28-C29-C30
56	n	200	8Q1	O27-C28-C29-C31
56	n	200	8Q1	O27-C28-C29-C32
56	n	200	8Q1	C42-C43-S44-C1
57	у	302	PGT	C32-C31-O2-C2
57	у	302	PGT	C4-O4P-P-O3P
57	у	302	PGT	C4-O4P-P-O1P
57	у	302	PGT	O4P-C4-C5-C6
58	Z	301	PSF	CB-01-P-04
58	Z	301	PSF	CB-01-P-03
58	Z	301	PSF	C13-C1-O11-C3
58	Z	301	PSF	N-CA-CB-O1
58	Z	301	PSF	C-CA-CB-O1
59	Z	302	T7X	C12-C10-O16-C8
59	Z	302	T7X	O17-C10-O16-C8
59	Z	302	T7X	C21-C22-C23-C24
51	М	502	PTY	O30-C30-O4-C1
52	М	501	PC7	O11-C11-O3-C3
53	М	503	LMN	OBZ-CCS-OCB-CCQ
58	Z	301	PSF	O12-C1-O11-C3
53	М	503	LMN	CCW-CCS-OCB-CCQ
52	М	501	PC7	C12-C11-O3-C3
51	N	501	PTY	C11-C8-O7-C6
51	М	502	PTY	C31-C30-O4-C1
57	у	302	PGT	O31-C31-O2-C2
54	P	500	NDP	O4D-C1D-N1N-C6N
53	М	503	LMN	OAJ-CBN-CCD-CCO

Continued from previous page...



|--|

Mol	Chain	$\mathbf{Res}$	Type	Atoms
53	М	503	LMN	OAI-CBM-CCC-OBY
57	у	302	PGT	C14-C15-C16-C17
53	М	503	LMN	OAI-CBM-CCC-CCN
52	f	201	PC7	C18-C19-C20-C21
57	У	302	PGT	O4P-C4-C5-O5
53	М	503	LMN	OAJ-CBN-CCD-OBZ
53	М	503	LMN	OAL-CBP-CCF-OBX
52	М	501	PC7	C11-C12-C13-C14
52	f	201	PC7	C31-C32-C33-C34
52	f	201	PC7	C11-C12-C13-C14
59	Z	302	T7X	C11-C31-C32-C33
53	М	503	LMN	CBJ-CBL-CBR-CCM
53	М	503	LMN	OBV-CBT-CCM-CBS
51	Ι	303	PTY	C35-C36-C37-C38
51	Ι	303	PTY	C5-O14-P1-O11
51	М	502	PTY	C5-O14-P1-O11
52	М	501	PC7	C4-O4P-P-O3P
52	f	201	PC7	C1-O3P-P-O4P
52	f	201	PC7	C4-O4P-P-O3P
57	у	302	PGT	C1-O3P-P-O4P
58	Z	301	PSF	CB-O1-P-O2
51	N	501	PTY	C15-C16-C17-C18
53	М	503	LMN	CBE-CBG-CBI-CBK
52	f	201	PC7	C40-C41-C42-C43
51	Ι	303	PTY	C23-C24-C25-C26
57	У	302	PGT	C18-C19-C20-C21
51	М	502	PTY	C22-C23-C24-C25
57	У	302	PGT	C35-C36-C37-C38
53	М	503	LMN	C2-C1-O1-CBS
52	f	201	PC7	C13-C14-C15-C16
53	М	503	LMN	CBC-CBE-CBG-CBI
53	М	503	LMN	CBD-CBF-CBH-CBJ
51	М	502	PTY	C19-C20-C21-C22
57	У	302	PGT	C15-C16-C17-C18
51	Ι	303	PTY	C31-C32-C33-C34
52	М	501	PC7	C32-C33-C34-C35
53	М	503	LMN	OAL-CBP-CCF-CCQ
51	Ι	303	PTY	C12-C13-C14-C15
52	f	201	PC7	C19-C20-C21-C22
57	У	302	PGT	C17-C18-C19-C20
53	М	503	LMN	CAY-CBA-CBC-CBE
59	Z	302	T7X	C12-C13-C14-C15



Mol	Chain	Res	Type	Atoms
51	М	502	PTY	O14-C5-C6-O7
53	М	503	LMN	CBG-CBI-CBK-CBQ
51	N	501	PTY	C32-C33-C34-C35
53	М	503	LMN	CBB-CBD-CBF-CBH
51	М	502	PTY	C18-C19-C20-C21
53	М	503	LMN	CCF-CCQ-OCB-CCS
49	F	500	FMN	O2'-C2'-C3'-C4'
51	N	501	PTY	C5-O14-P1-O11
51	Ι	303	PTY	C30-C31-C32-C33
51	Ι	303	PTY	O14-C5-C6-C1
53	М	503	LMN	CCH-CCQ-OCB-CCS
51	Ι	303	PTY	C37-C38-C39-C40
52	М	501	PC7	C35-C36-C37-C38
59	Z	302	T7X	C33-C34-C35-C36
56	W	200	8Q1	O33-C32-C34-O35
59	Z	302	T7X	C1-O1-P1-O13
53	М	503	LMN	O5-C5-C6-O6
56	n	200	8Q1	C13-C14-C15-C16
56	W	200	8Q1	C30-C29-C32-O33
56	W	200	8Q1	C31-C29-C32-O33
51	N	501	PTY	C31-C30-O4-C1
51	М	502	PTY	O14-C5-C6-C1
51	Ν	501	PTY	O14-C5-C6-C1
51	М	502	PTY	N1-C2-C3-O11
52	М	501	PC7	C41-C42-C43-C44
51	Ι	303	PTY	C11-C12-C13-C14
51	М	502	PTY	C21-C22-C23-C24
51	Ν	501	PTY	O4-C1-C6-C5
51	Ν	501	PTY	C22-C23-C24-C25
59	Z	302	T7X	C15-C16-C17-C18
59	Z	302	T7X	C16-C17-C18-C19
59	Z	302	T7X	C19-C20-C21-C22
51	Ν	501	PTY	O14-C5-C6-O7
59	Z	302	T7X	O13-C7-C8-O16
49	F	500	FMN	O2'-C2'-C3'-O3'
59	Z	302	T7X	C41-C42-C43-C44
51	Ν	501	PTY	O4-C1-C6-O7
52	М	501	PC7	O2-C2-C3-O3
57	у	302	PGT	C13-C14-C15-C16
51	N	501	PTY	O30-C30-O4-C1
52	f	201	PC7	C36-C37-C38-C39
56	W	200	8Q1	O4-C1-C6-C7

Continued from previous page...



EMD-11875, 7A	AR7
---------------	-----

Mol	Chain	Res	Type	Atoms
57	у	302	PGT	O3P-C1-C2-C3
57	у	302	PGT	C16-C17-C18-C19
51	Ň	501	PTY	C1-C6-O7-C8
59	Z	302	T7X	C9-C8-O16-C10
51	Ι	303	PTY	C8-C11-C12-C13
52	f	201	PC7	C1-C2-C3-O3
52	f	201	PC7	O3P-C1-C2-O2
53	М	503	LMN	OBY-CCR-O4-C4
58	Z	301	PSF	OT1-C-CA-CB
52	М	501	PC7	C23-C24-C25-C26
51	Ι	303	PTY	C3-O11-P1-O14
51	N	501	PTY	C3-O11-P1-O12
51	N	501	PTY	C5-O14-P1-O12
52	f	201	PC7	C1-O3P-P-O1P
54	Р	500	NDP	C5B-O5B-PA-O1A
57	У	302	PGT	C1-O3P-P-O2P
59	Z	302	T7X	C7-O13-P1-O11
52	f	201	PC7	O3P-C1-C2-C3
59	Z	302	T7X	O13-C7-C8-C9
52	f	201	PC7	C33-C34-C35-C36
52	f	201	PC7	C42-C43-C44-C45
57	У	302	PGT	C19-C20-C21-C22
51	N	501	PTY	C33-C34-C35-C36
57	У	302	PGT	O3P-C1-C2-O2
51	Ι	303	PTY	C18-C19-C20-C21
52	М	501	PC7	C19-C20-C21-C22
53	М	503	LMN	CBL-CBR-CCM-CBT
56	n	200	8Q1	C43-C42-N41-C39
52	f	201	PC7	O4P-C4-C5-N
53	М	503	LMN	CCM-CBT-OBV-CCJ
56	W	200	$8\overline{Q1}$	C28-C29-C32-O33
57	У	302	PGT	C1-C2-C3-O3
51	М	502	PTY	O4-C1-C6-O7
57	У	302	PGT	O2-C2-C3-O3
51	N	501	PTY	C14-C15-C16-C17
53	М	503	LMN	CAX-CAZ-CBB-CBD
52	М	501	PC7	C18-C19-C20-C21
51	N	501	PTY	C30-C31-C32-C33
52	f	201	PC7	O3-C11-C12-C13
51	Ι	303	PTY	C15-C16-C17-C18
49	F	500	FMN	C5'-O5'-P-O1P
57	У	302	PGT	C33-C34-C35-C36

Continued from previous page...



Mol	Chain	Res	Type	Atoms
57	V	302	PGT	C12-C11-O3-C3
51	I	303	PTY	C13-C14-C15-C16
51	М	502	PTY	C37-C38-C39-C40
59	Z	302	T7X	C7-O13-P1-O1
52	М	501	PC7	C36-C37-C38-C39
52	М	501	PC7	C38-C39-C40-C41
56	W	200	8Q1	C7-C8-C9-C10
57	y	302	PGT	O11-C11-O3-C3
50	H	500	UQ9	C24-C26-C27-C28
53	М	503	LMN	CCV-CCR-O4-C4
52	f	201	PC7	C16-C17-C18-C19
52	М	501	PC7	O3P-C1-C2-O2
51	N	501	PTY	C11-C12-C13-C14
59	Z	302	T7X	C39-C40-C41-C42
57	у	302	PGT	C5-C4-O4P-P
52	f	201	PC7	C35-C36-C37-C38
58	Z	301	PSF	OT2-C-CA-CB
59	Z	302	T7X	C35-C36-C37-C38
51	М	502	PTY	C8-C11-C12-C13
56	n	200	8Q1	C9-C10-C11-C12
59	Z	302	T7X	C13-C14-C15-C16
59	Z	302	T7X	C43-C44-C45-C46
59	Z	302	T7X	C31-C32-C33-C34
56	W	200	8Q1	C12-C13-C14-C15
53	М	503	LMN	CBL-CBR-CCM-CBS
52	М	501	PC7	C31-C32-C33-C34
59	Z	302	T7X	O18-C11-C31-C32
57	У	302	PGT	O3-C11-C12-C13
56	W	200	8Q1	C1-C6-C7-C8
51	N	501	PTY	C25-C26-C27-C28
51	N	501	PTY	O4-C30-C31-C32
51	М	502	PTY	C33-C34-C35-C36
51	М	502	PTY	C39-C40-C41-C42
51	М	502	PTY	O4-C1-C6-C5
56	W	200	8Q1	C28-O27-P24-O3
51	М	502	PTY	C34-C35-C36-C37
56	W	200	8Q1	C30-C29-C32-C34
51	М	502	PTY	C12-C11-C8-O7
52	f	201	PC7	C32-C33-C34-C35
51	М	502	PTY	C31-C32-C33-C34
58	Z	301	PSF	O11-C1-C13-C14
51	Ι	303	PTY	C38-C39-C40-C41

Continued from previous page...



Mol	Chain	Res	Type	Atoms
57	у	302	PGT	O2-C31-C32-C33
51	Ι	303	PTY	C40-C41-C42-C43
59	Z	302	T7X	O16-C10-C12-C13
51	N	501	PTY	O30-C30-C31-C32
51	М	502	PTY	C12-C11-C8-O10
52	М	501	PC7	C1-C2-C3-O3
51	Ι	303	PTY	C5-O14-P1-O12
52	М	501	PC7	C1-O3P-P-O2P
54	Р	500	NDP	C5D-O5D-PN-O1N
51	Ν	501	PTY	C36-C37-C38-C39
59	Z	302	T7X	O17-C10-C12-C13
52	f	201	PC7	C15-C16-C17-C18
51	Ι	303	PTY	C2-C3-O11-P1
51	Ν	501	PTY	C2-C3-O11-P1
57	У	302	PGT	O31-C31-C32-C33
58	Z	301	PSF	O12-C1-C13-C14
51	Ι	303	PTY	C33-C34-C35-C36
51	М	502	PTY	C11-C12-C13-C14

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

































## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11875. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



## 6.2 Central slices (i)

### 6.2.1 Primary map



X Index: 300



Y Index: 300



Z Index: 300

#### 6.2.2 Raw map



X Index: 300

Y Index: 300



The images above show central slices of the map in three orthogonal directions.



### 6.3 Largest variance slices (i)

### 6.3.1 Primary map



X Index: 224



Y Index: 240



Z Index: 299

#### 6.3.2 Raw map



X Index: 287

Y Index: 268



The images above show the largest variance slices of the map in three orthogonal directions.



### 6.4 Orthogonal surface views (i)

6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.011. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.4.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

## 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is 234  $\rm nm^3;$  this corresponds to an approximate mass of 211 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



*Reported resolution corresponds to spatial frequency of 0.269  ${\rm \AA^{-1}}$ 



## 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



*Reported resolution corresponds to spatial frequency of 0.269  $\mathrm{\AA^{-1}}$ 



### 8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.72	-	-	
Author-provided FSC curve	3.44	4.13	3.53	
Unmasked-calculated*	4.45	8.20	5.98	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.45 differs from the reported value 3.72 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11875 and PDB model 7AR7. Per-residue inclusion information can be found in section 3 on page 21.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.011 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.011).



### 9.4 Atom inclusion (i)



At the recommended contour level, 66% of all backbone atoms, 54% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.011) and Q-score for the entire model and for each chain.

$\mathbf{Chain}$	Atom inclusion	Q-score
All	0.5446	0.4380
А	0.6347	0.4980
В	0.7592	0.5290
С	0.7649	0.5350
D	0.7749	0.5320
Е	0.6193	0.4410
F	0.6440	0.4680
G	0.7301	0.5110
Н	0.6606	0.4930
Ι	0.7865	0.5380
J	0.6456	0.5010
K	0.5982	0.4920
L	0.1766	0.2760
М	0.5096	0.4500
Ν	0.6407	0.4990
Р	0.5622	0.4460
Q	0.6909	0.5240
R	0.7116	0.5120
S	0.6475	0.4530
Т	0.0166	0.1250
U	0.0772	0.2080
V	0.6597	0.4710
W	0.4340	0.3980
Х	0.6365	0.4590
Z	0.6594	0.4850
a	0.6558	0.4840
b	0.6323	0.4870
с	0.2446	0.3200
d	0.6378	0.4850
е	0.7021	0.4760
f	0.6755	0.5020
g	0.3899	0.3800
i	0.5977	0.4490
j	0.1089	0.2500
k	0.0635	0.2160



Continued from previous page...

Chain	Atom inclusion	Q-score
l	0.0767	0.2590
m	0.1764	0.2650
n	0.0493	0.1900
О	0.0980	0.2180
р	0.3815	0.3740
q	0.4032	0.4550
r	0.3415	0.4450
u	0.5133	0.3280
V	0.5747	0.4650
X	0.5154	0.4390
У	0.4453	0.3960
Z	0.4978	0.4200

