

wwPDB NMR Structure Validation Summary Report (i)

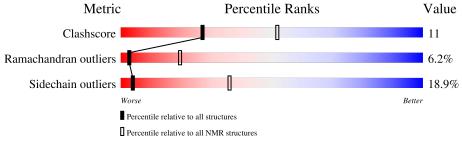
Feb 7, 2022 – 04:59 PM EST

PDB ID	:	1AIY
Title	:	R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 10 STRUC-
		TURES
Authors	:	Chang, X.; Jorgensen, A.M.M.; Bardrum, P.; Led, J.J.
Deposited on	:	1997-04-30

This is a wwPDB NMR Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
ShiftChecker	:	2.26
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)		
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f NMR} \ { m archive} \ (\#{ m Entries})$		
Clashscore	158937	12864		
Ramachandran outliers	154571	11451		
Sidechain outliers	154315	11428		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	21	67%	29%	5%
1	С	21	71%	29%	
1	Е	21	67%	29%	5%
1	G	21	71%	29%	
1	Ι	21	71%	29%	
1	Κ	21	71%	29%	
2	В	30	73%	20%	7%
2	D	30	73%	13% 79	% 7%
2	F	30	70%	23%	7%

Continued on next page...

Continued from previous page...

Mol	Chain		Quality of chain					
2	Н	30	60%	33%	7%			
2	J	30	70%	23%	7%			
2	L	30	67%	27%	7%			

2 Ensemble composition and analysis (i)

This entry contains 10 models. The atoms present in the NMR models are not consistent. Some calculations may have failed as a result. All residues are included in the validation scores. Model 9 is the overall representative, medoid model (most similar to other models).

The following residues are included in the computation of the global validation metrics.

	Well-defined (core) protein residues						
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model				
1	A:2-A:21, B:1-B:30, C:1-	0.73	9				
	C:21, D:1-D:28, E:2-E:21,						
	F:1-F:30, G:1-G:21, H:1-						
	H:30, I:1-I:21, J:1-J:30, K:1-						
	K:21, L:1-L:30 (302)						

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 1 clusters and 7 single-model clusters were found.

Cluster number	Models
1	5, 8, 9
Single-model clusters	1; 2; 3; 4; 6; 7; 10

3 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 4802 atoms, of which 2326 are hydrogens and 0 are deuteriums.

Mol	Chain	Residues			Atom	s			Trace
1	А	21	Total	С	Η	Ν	Ο	S	0
	A	21	312	99	149	25	35	4	0
1	С	21	Total	С	Η	Ν	Ο	\mathbf{S}	0
	U	21	312	99	149	25	35	4	0
1	Е	21	Total	С	Η	Ν	Ο	\mathbf{S}	0
	Ľ	21	312	99	149	25	35	4	0
1	G	21	Total	С	Η	Ν	Ο	\mathbf{S}	0
1	G	21	312	99	149	25	35	4	0
1	Т	21	Total	С	Η	Ν	Ο	\mathbf{S}	0
L	I	21	312	99	149	25	35	4	0
1	K	21	Total	С	Η	Ν	Ο	\mathbf{S}	0
	17	<i>4</i> 1	312	99	149	25	35	4	

• Molecule 1 is a protein called R6 INSULIN HEXAMER.

• Molecule 2 is a protein called R6 INSULIN HEXAMER.

Mol	Chain	Residues		I	Atom	s			Trace
2	В	30	Total	С	Η	Ν	Ο	S	0
	D	- 50	474	158	232	40	42	2	0
2	D	30	Total	С	Н	Ν	Ο	S	0
	D	- 50	474	158	232	40	42	2	0
2	F	30	Total	С	Η	Ν	Ο	S	0
	Г	50	474	158	232	40	42	2	0
2	Н	30	Total	С	Н	Ν	Ο	S	0
	11	50	474	158	232	40	42	2	0
2	J	30	Total	С	Н	Ν	Ο	S	0
	J	50	474	158	232	40	42	2	0
2	L	30	Total	С	Η	Ν	Ο	S	0
	Ľ	50	474	158	232	40	42	2	0

• Molecule 3 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms
3	В	1	Total Zn 1 1
3	D	1	Total Zn 1 1

• Molecule 4 is PHENOL (three-letter code: HOH) (formula: H₂O).

Mol	Chain	Residues	A	ton	ns	
4	В	1	Total	С	Η	0
4	D	1	13	6	6	1
4	Л	1	Total	С	Η	0
4	D	1	13	6	6	1
4	F	1	Total	С	Η	0
4	Г	I	13	6	6	1
4	Н	1	Total	С	Η	0
4	11	I	13	6	6	1
4	T	1	Total	С	Η	0
4	J	I	13	6	6	1
4	L	1	Total	С	Η	0
1 1			13	6	6	1

• Molecule 5 is water.

Mol	Chain	Residues	Atoms
5	Б	1	Total H O
0	Г	T	3 2 1
5	ц	1	Total H O
0	П	1	3 2 1

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: R6 INSULIN HEXAMER

Chain A:	67%	29% 5%
<mark>61</mark> 89 812 113 812 812 813 819 821 821		
• Molecule 1: R6	INSULIN HEXAMER	
Chain C:	71%	29%
61 95 110 110 113 113 113 113 113 113 113 113		
• Molecule 1: R6	5 INSULIN HEXAMER	
Chain E:	67%	29% 5%
61 96 110 110 113 113 113 113 113 120 020 020		
• Molecule 1: R6	insulin hexamer	
Chain G:	71%	29%
61 95 110 111 113 113 113 113 113 113 113 113		
• Molecule 1: R6	insulin hexamer	
Chain I:	71%	29%
61 46 110 110 113 113 113 113 113 113 113 113		
• Molecule 1: R6	INSULIN HEXAMER	
Chain K:	71%	29%
		E

 \bullet Molecule 2: R6 INSULIN HEXAMER

Chain B:	73%	20%	7%
F1 V2 N3 F115 F115 F117 F127 K29	130		
• Molecule 2: I	R6 INSULIN HEXAMER		
Chain D:	73%	13% 7%	6 7%
F1 V2 N3 F115 F117 F17 R22 K29			
• Molecule 2: I	R6 INSULIN HEXAMER		
Chain F:	70%	23%	7%
F1 V2 N3 L11 L11 L15 L15 L17 L17 L17 R22	130 130		
• Molecule 2: I	R6 INSULIN HEXAMER		
Chain H:	60%	33%	7%
F1 V2 N3 L11 L11 L15 L15 V16 V16 C19	620 1521 1722 1730 1730		
• Molecule 2: I	R6 INSULIN HEXAMER		
Chain J:	70%	23%	7%
F1 V2 V3 L11 L11 L15 V16 L11 L17 L17 L17 L17 L17 L17 L17 L17 L17	130 130		
• Molecule 2: I	R6 INSULIN HEXAMER		
Chain L:	67%	27%	7%
F1 V2 N3 L11 V12 L11 L15 L15 L17 L17	R22 130 130		

4.2 Residue scores for the representative (medoid) model from the NMR ensemble

The representative model is number 9. Colouring as in section 4.1 above.

• Molecule 1: R6 INSULIN HEXAMER

Chain A:	67%	29% 5%
61 45 89 812 113 714 714 712		
• Molecule 1: R6 I	NSULIN HEXAMER	
Chain C:	71%	29%
G G G G S S S S S S S S S S		
• Molecule 1: R6 I	NSULIN HEXAMER	
Chain E:	67%	29% 5%
61 89 81 81 81 81 81 81 81 81 81 81 81 81 81		
• Molecule 1: R6 I	NSULIN HEXAMER	
Chain G:	67%	33%
G1 G2 G3 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4 G4		
• Molecule 1: R6 I	NSULIN HEXAMER	
Chain I:	71%	29%
G1 Q5 C6 C7 C7 C13 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113113		
• Molecule 1: R6 I	NSULIN HEXAMER	
Chain K:	71%	24% 5%
G1 812 812 113 114 714 714 712		
• Molecule 2: R6 I	NSULIN HEXAMER	
Chain B:	60%	37% •
F1 V2 V3 V3 L6 L6 L1 V12 V12 V18 V18 V18 V18 V12 V22	023 127 128 130 130	
• Molecule 2: R6 I	NSULIN HEXAMER	
Chain D:	60%	30% · 7%
F1 V2 N3 N3 V12 V12 V12 V12 V18 V18 V18 V12 C19 S2 S2	F24 127 128 130	
	W O R L D W PROTEIN DAT	

Chain F:	67%	30%	·
F1 V2 N3 V16 L17 C19 C19	R22 723 724 727 728 728 728 730		
• Molecule	2: R6 INSULIN HEXAMER		
Chain H:	53%	43%	•
F1 V2 N3 L6 L11 V12	Y 16 L 17 V 18 C 19 C 19 C 29 F 24 F 29 F 28 F 29 T 20 T 20		
• Molecule	2: R6 INSULIN HEXAMER		
Chain J:	57%	40%	•
F1 V2 N3 H10 L11 V12	L17 L17 C19 C19 C19 F24 F24 F28 F28 F28 F28 F29 T30		
• Molecule	2: R6 INSULIN HEXAMER		
Chain L:	57%	40%	•
F1 V2 N3 H10 L111 V12	111 117 117 117 117 117 117 117 117 117		

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *DISTANCE GEOMETRY, SIMULATED ANNEALING AND ENERGY MINIMIZATION.*

Of the 30 calculated structures, 10 were deposited, based on the following criterion: *LOWEST TOTAL ENERGY*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
X-PLOR	refinement	3.1
X-PLOR	structure solution	•

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: IPH, ZN

There are no covalent bond-length or bond-angle outliers.

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	Chirality	Planarity
2	В	$0.0{\pm}0.0$	$1.0{\pm}0.0$
2	D	$0.0{\pm}0.0$	$1.0{\pm}0.0$
2	F	$0.0{\pm}0.0$	$1.0{\pm}0.0$
2	Н	$0.0{\pm}0.0$	$1.0{\pm}0.0$
2	J	$0.0{\pm}0.0$	$1.0{\pm}0.0$
2	L	$0.0{\pm}0.0$	$1.0{\pm}0.0$
All	All	0	60

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

5 of 6 unique planar outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Group	Models (Total)
2	В	22	ARG	Sidechain	10
2	D	22	ARG	Sidechain	10
2	F	22	ARG	Sidechain	10
2	Н	22	ARG	Sidechain	10
2	J	22	ARG	Sidechain	10

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	159	144	144	2±1
1	С	163	149	149	2±2
1	Е	159	144	144	2 ± 1
1	G	163	149	149	2 ± 2
1	Ι	163	149	149	2 ± 1
1	K	163	149	149	2 ± 2
2	В	242	232	232	7 ± 3
2	D	225	212	212	7 ± 4
2	F	242	232	232	7 ± 4
2	Н	242	232	232	8±3
2	J	242	232	232	8±3
2	L	242	232	232	8±3
4	L	7	6	6	1±1
4	D	7	6	6	1±1
4	F	7	6	6	1±1
4	J	7	6	6	1±1
4	В	7	6	6	0 ± 1
4	Н	7	6	6	1±1
5	Н	1	2	0	0 ± 1
All	All	24510	22960	22920	517

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

5 of 394 unique	clashes are	listed belo	ow. sorted	by their	clash magnitude.

Atom-1	Atom 2	Atom-2 $Clash(Å) Distance(Å) M_{UU}$		Moo	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
2:B:17:LEU:HD23	2:H:17:LEU:HD23	0.76	1.57	1	3	
2:F:17:LEU:HD13	2:H:5:HIS:NE2	0.73	1.99	6	1	
2:D:8:GLY:O	2:D:12:VAL:HG23	0.71	1.86	7	2	
2:B:8:GLY:O	2:B:12:VAL:HG23	0.70	1.85	7	2	
2:H:8:GLY:O	2:H:12:VAL:HG23	0.68	1.87	7	2	

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
1	А	19/21~(90%)	$16\pm1~(82\pm5\%)$	$2\pm1 (12\pm5\%)$	$1\pm1 (6\pm4\%)$	3	19
1	С	19/21~(90%)	$15\pm1 (81\pm5\%)$	$2\pm1 (13\pm7\%)$	$1\pm1~(6\pm4\%)$	3	19
1	Е	19/21~(90%)	15 ± 1 (81 $\pm3\%$)	$2\pm1 (13\pm5\%)$	$1\pm1 (6\pm4\%)$	3	21
1	G	19/21~(90%)	16 ± 1 (82 $\pm4\%$)	$2\pm1 (13\pm6\%)$	$1\pm1 (6\pm4\%)$	3	21
1	Ι	19/21~(90%)	15 ± 1 (81 $\pm4\%$)	$3\pm1~(14\pm5\%)$	$1\pm1~(6\pm3\%)$	3	21
1	K	19/21~(90%)	$15\pm1 (81\pm5\%)$	$2\pm1 (13\pm6\%)$	$1\pm1~(6\pm3\%)$	3	19
2	В	28/30~(93%)	24 ± 1 (84 $\pm5\%$)	3 ± 1 (10±4%)	2 ± 1 (6±3%)	3	22
2	D	27/30~(90%)	23 ± 1 (86 $\pm6\%$)	$2\pm1~(8\pm5\%)$	2 ± 1 (6±3%)	3	22
2	F	28/30~(93%)	$24 \pm 1 \ (85 \pm 5\%)$	2 ± 1 (9 $\pm4\%$)	2 ± 1 (6±3%)	3	19
2	Н	28/30~(93%)	23 ± 2 (83 $\pm6\%$)	$3\pm1~(10\pm5\%)$	2 ± 1 (7 $\pm4\%$)	2	17
2	J	28/30~(93%)	23 ± 1 (83 $\pm5\%$)	3 ± 1 (10±4%)	2 ± 1 (6±3%)	3	19
2	L	28/30~(93%)	24 ± 2 (84 $\pm6\%$)	$3\pm1~(10\pm5\%)$	2 ± 1 (6±3%)	3	19
All	All	2810/3060~(92%)	2331~(83%)	306 (11%)	173~(6%)	3	19

5 of 74 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
2	В	3	ASN	8
2	D	3	ASN	8
2	F	3	ASN	8
2	Н	3	ASN	8
2	J	3	ASN	8

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	А	20/20~(100%)	15 ± 2 (76 $\pm8\%$)	$5\pm2~(25\pm8\%)$	2	25
1	С	20/20~(100%)	$15\pm1~(76\pm7\%)$	$5\pm1~(24\pm7\%)$	2	26
1	Ε	20/20~(100%)	15 ± 1 (76 $\pm6\%$)	$5\pm1~(25\pm6\%)$	2	25
1	G	20/20~(100%)	$15\pm1~(76\pm5\%)$	$5\pm1~(24\pm5\%)$	2	26
1	Ι	20/20~(100%)	$15\pm2~(76\pm8\%)$	$5\pm2(24\pm8\%)$	3	27

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Per	centiles
1	Κ	20/20~(100%)	$15\pm2~(76\pm9\%)$	$5\pm2~(24\pm9\%)$	3	27
2	В	26/26~(100%)	22 ± 2 (85 $\pm7\%$)	$4\pm2~(15\pm7\%)$	6	45
2	D	24/26~(92%)	21 ± 2 (87 $\pm8\%$)	$3\pm2~(13\pm8\%)$	7	49
2	F	26/26~(100%)	22 ± 2 (84 $\pm6\%$)	$4\pm2~(16\pm6\%)$	5	41
2	Н	26/26~(100%)	22 ± 2 (84 $\pm7\%$)	$4\pm2~(16\pm7\%)$	5	42
2	J	26/26~(100%)	22 ± 2 (85 $\pm6\%$)	$4\pm2~(15\pm6\%)$	6	44
2	L	26/26~(100%)	22 ± 2 (85 $\pm7\%$)	$4\pm2~(15\pm7\%)$	6	44
All	All	2740/2760~(99%)	2222~(81%)	518 (19%)	4	36

Continued from previous page...

5 of 153 unique residues with a non-rotameric side chain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	Е	12	SER	9
1	А	12	SER	8
1	С	12	SER	8
1	G	12	SER	8
1	А	13	LEU	7

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 2 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds

that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

Mol	Tuno	Chain	Res	Link		Bond leng	gths
	Type	Ullaili	nes		Counts	RMSZ	#Z>2
4	IPH	F	32	-	7,7,7	$0.79 {\pm} 0.01$	0±0 (0±0%)
5	IPH	Н	31	-	7,7,7	$0.32 {\pm} 0.39$	0±0 (0±0%)
4	IPH	J	31	-	7,7,7	$0.40{\pm}0.40$	0±0 (0±0%)
4	IPH	J	32	-	7,7,7	$0.32 {\pm} 0.39$	0±0 (0±0%)
4	IPH	D	32	-	7,7,7	$0.80{\pm}0.01$	0±0 (0±0%)
4	IPH	L	32	-	7,7,7	$0.31 {\pm} 0.38$	0±0 (0±0%)
4	IPH	В	32	-	7,7,7	$0.79 {\pm} 0.01$	0±0 (0±0%)
4	IPH	Н	33	-	7,7,7	0.08 ± 0.24	0±0 (0±0%)
4	IPH	L	31	-	7,7,7	$0.48 {\pm} 0.39$	0±0 (0±0%)
4	IPH	Н	32	-	7,7,7	$0.39 {\pm} 0.39$	0±0 (0±0%)
4	IPH	J	33	-	7,7,7	0.08 ± 0.24	0±0 (0±0%)

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles.

Mol	Turne	Chain	Res	Link		Bond ang	gles
	Type	Chain	nes		Counts	RMSZ	#Z>2
4	IPH	F	32	-	8,8,8	$0.26 {\pm} 0.01$	0±0 (0±0%)
5	IPH	Н	31	-	8,8,8	0.11 ± 0.13	0±0 (0±0%)
4	IPH	J	31	-	8,8,8	0.13 ± 0.13	0±0 (0±0%)
4	IPH	J	32	-	8,8,8	$0.10{\pm}0.13$	0±0 (0±0%)
4	IPH	D	32	-	8,8,8	$0.26 {\pm} 0.01$	0±0 (0±0%)
4	IPH	L	32	-	8,8,8	$0.10{\pm}0.12$	0±0 (0±0%)
4	IPH	В	32	-	8,8,8	$0.25 {\pm} 0.01$	0±0 (0±0%)
4	IPH	Н	33	-	8,8,8	$0.03 {\pm} 0.08$	0±0 (0±0%)
4	IPH	L	31	-	8,8,8	0.15 ± 0.12	0±0 (0±0%)
4	IPH	Н	32	-	8,8,8	0.13 ± 0.13	0±0 (0±0%)
4	IPH	J	33	-	8,8,8	$0.02{\pm}0.07$	0±0 (0±0%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	IPH	В	32	-	-	-	$0\pm 0,1,1,1$
5	IPH	Н	31	-	-	-	$0\pm 0,1,1,1$
4	IPH	J	31	-	-	-	$0\pm 0,1,1,1$
4	IPH	D	32	-	-	-	$0\pm 0,1,1,1$
4	IPH	L	31	-	-	-	$0\pm 0,1,1,1$
4	IPH	F	32	-	-	-	$0\pm 0,1,1,1$

no outliers of that kind were identified.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

