

Mar 19, 2024 – 05:50 PM JST

PDB ID	:	6AH0
EMDB ID	:	EMD-9621
Title	:	The Cryo-EM Structure of the Precusor of Human Pre-catalytic Spliceosome
		(pre-B complex)
Authors	:	Zhan, X.; Yan, C.; Zhang, X.; Shi, Y.
Deposited on	:	2018-08-15
Resolution	:	5.70 Å(reported)
This is	a F	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 5.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	В	117	• 38% 44%	16% ·
2	D	2136	86%	• 12%
3	Е	357	81%	• 16%
4	Р	118	• 61% •	37%
4	a	118	6 6%	34%
4	k	118	72%	• 28%
5	Q	86	6% 81%	• 17%
5	b	86	10%	15%

Continued on next page...

Mol	Chain	Length	Quality of chair	1
			86%	
5	m	86	86%	14%
6	D	02	1%	171
0	n	92	5%	15%
6	С	92	85%	15%
0	0	02	86%	1570
6	1	92	86%	14%
			7%	
7	S	76	93%	•••
-	1	70	9%	
(d	70	91% 80%	9%
7	n	76	800/	110/
1	11	10	5%	11%
8	Т	126	56%	44%
8	е	126	62%	38%
0	1	100	63%	
8	h	126	63%	37%
9	U	231	• 26% • 72	%
0	c	001		
9	İ	231	28% 72	%
9	i	221	22%	600/
5	1	201	•	00 70
10	V	119	64%	5% 31%
			5%	
10	g	119	78%	22%
10	•	110	69%	_
10	J	119	69%	31%
11	F	107	200/ 210/	260/
11	1	101	<u> </u>	50%
12	q	95	91%	• 5%
			74%	
13	r	102	72%	• 26%
14		100	53%	
14	S	139	53% •	47%
15	+	01	02 70	100/
10	U	31	88%	• 18%
16	х	80	86%	• 12%
			63%	
17	У	103	63%	37%
10		0.0	64%	
18	Z	96	63%	36%
10	С	974		
19	G	214	• > % 85%	

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chair	1	
20	Н	188	54%	42%	
		255	64%		
	0	200	63% ·	36%	
22	р	225	42%	58%	
23	u	793	15% • 84%		
24	v	464	21% 19% • 79%		
25	W	501	88%		12%
20	vv	501	77%		• 1270
26	1	1304	56%	22%	21%
27	2	895	19% • 79%		
28	3	1217	96%		10%
20		404	18%		1070
29	4	424	17% • 82%		
30	5	125	75%	11%	14%
31	6	110	81% 72%	8% •	19%
32	7	86	77%	169/	220/
02	-	00	• ec	•	2.3 %
33	J	683	23% • 76%	2	
34	К	522	58% 7%	34%	
35	Ν	941	• 53% 9%	38%	
36	L	499	45%	55%	
37	М	128	03%		5%
38	0	149	•		5.0
- 30	0	142	5%		••
39	W	565	61%	17% • •	18%
40	Ι	144	38% 31%	13%	19%
41	X	820	50%	50%	
42	А	2335	86%		9% • 5%
43	С	972	77%	7%	16%

Continued from previous page...

2 Entry composition (i)

There are 46 unique types of molecules in this entry. The entry contains 63369 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called U5snRNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
1	В	115	Total 2419	C 1084	N 402	0 818	Р 115	0	0

• Molecule 2 is a protein called U5 small nuclear ribonucleoprotein 200 kDa helicase.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	D	1874	Total 7496	C 3748	N 1874	0 1874	0	0

• Molecule 3 is a protein called U5 small nuclear ribonucleoprotein 40 kDa protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	Ε	299	Total 1196	C 598	N 299	O 299	0	0

• Molecule 4 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	0	78	Total	С	Ν	0	0	0
4	4 a	10	318	162	78	78	0	0
4	ŀ	85	Total	С	Ν	0	0	0
4	K	00	340	170	85	85	0	0
4	D	74	Total	С	Ν	0	0	0
4	1	14	300	152	74	74	0	0

• Molecule 5 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms				AltConf	Trace
5	Ь	73	Total	С	Ν	0	0	0
9	D	15	300	154	73	73	0	0
F	m	74	Total	С	Ν	0	0	0
Э	111	14	296	148	74	74		U

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf	Trace
5	Q	71	Total 292	C 150	N 71	O 71	0	0

• Molecule 6 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms	AltConf	Trace
6	С	78	Total C N O 314 158 78 78	0	0
6	1	79	Total C N O 316 158 79 79	0	0
6	R	78	Total C N O 314 158 78 78	0	0

• Molecule 7 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms	AltConf	Trace
7	d	69	Total C N O 282 144 69 69	0	0
7	n	68	Total C N O 272 136 68 68	0	0
7	S	73	Total C N O 298 152 73 73	0	0

• Molecule 8 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms	AltConf	Trace
8	е	78	Total C N O 318 162 78 78	0	0
8	h	80	Total C N O 320 160 80 80	0	0
8	Т	71	Total C N O 288 146 71 71	0	0

• Molecule 9 is a protein called Small nuclear ribonucleoprotein-associated proteins B and B'.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
9	f	64	Total 260	C 132	N 64	O 64	0	0
9	i	73	Total 292	C 146	N 73	O 73	0	0
9	U	64	Total 256	C 128	N 64	O 64	0	0

Mol	Chain	Residues		Atom	ıs		AltConf	Trace
10	œ	03	Total	С	Ν	0	0	0
10	g	90	380	194	93	93	0	0
10	;	80	Total	С	Ν	0	0	0
10	J	02	328	164	82	82	0	0
10	V	89	Total	С	Ν	0	0	0
10	v	02	334	170	82	82	0	0

• Molecule 10 is a protein called Small nuclear ribonucleoprotein Sm D1.

• Molecule 11 is a RNA chain called U6snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	F	69	Total 1470	C 656	N 259	0 486	Р 69	0	0

• Molecule 12 is a protein called U6 snRNA-associated Sm-like protein LSm2.

Mol	Chain	Residues	Atoms				AltConf	Trace
12	q	90	Total 360	C 180	N 90	O 90	0	0

• Molecule 13 is a protein called U6 snRNA-associated Sm-like protein LSm3.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
13	r	75	Total 300	C 150	N 75	O 75	0	0

• Molecule 14 is a protein called U6 snRNA-associated Sm-like protein LSm4.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
14	S	74	Total 296	C 148	N 74	О 74	0	0

• Molecule 15 is a protein called U6 snRNA-associated Sm-like protein LSm5.

Mol	Chain	Residues	Atoms				AltConf	Trace
15	t	75	Total 300	C 150	N 75	О 75	0	0

• Molecule 16 is a protein called U6 snRNA-associated Sm-like protein LSm6.

Mol	Chain	Residues		Atoms				Trace
16	х	70	Total 280	C 140	N 70	O 70	0	0

• Molecule 17 is a protein called U6 snRNA-associated Sm-like protein LSm7.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
17	У	65	Total 260	C 130	N 65	O 65	0	0

• Molecule 18 is a protein called U6 snRNA-associated Sm-like protein LSm8.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
18	Z	61	Total 244	C 122	N 61	O 61	0	0

• Molecule 19 is a RNA chain called pre-mRNA.

Mol	Chain	Residues		A	AltConf	Trace			
19	G	42	Total 862	C 387	N 122	0 311	Р 42	0	0

• Molecule 20 is a RNA chain called U2snRNA.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
20	Н	109	Total 2311	C 1032	N 396	О 774	Р 109	0	0

• Molecule 21 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
21	О	162	Total 648	C 324	N 162	O 162	0	0

• Molecule 22 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues	Atoms				AltConf	Trace
22	р	94	Total 376	C 188	N 94	0 94	0	0

• Molecule 23 is a protein called Splicing factor 3A subunit 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	u	124	Total 496	C 248	N 124	0 124	0	0

• Molecule 24 is a protein called Splicing factor 3A subunit 2.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
24	V	99	Total 396	C 198	N 99	O 99	0	0

• Molecule 25 is a protein called Splicing factor 3A subunit 3.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
25	W	443	Total 1773	C 887	N 443	0 443	0	0

• Molecule 26 is a protein called Splicing factor 3B subunit 1.

Mol	Chain	Residues		Ato	AltConf	Trace		
26	1	1030	Total 4120	C 2060	N 1030	O 1030	0	0

• Molecule 27 is a protein called Splicing factor 3B subunit 2.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
27	2	186	Total 744	C 372	N 186	O 186	0	0

• Molecule 28 is a protein called Splicing factor 3B subunit 3.

Mol	Chain	Residues		Ato	AltConf	Trace		
28	3	1174	Total 4696	C 2348	N 1174	0 1174	0	0

• Molecule 29 is a protein called Splicing factor 3B subunit 4.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
29	4	78	Total 312	C 156	N 78	0 78	0	0

• Molecule 30 is a protein called Splicing factor 3B subunit 6.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
30	5	108	Total 432	C 216	N 108	O 108	0	0

• Molecule 31 is a protein called PHD finger-like domain-containing protein 5A.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
31	6	89	Total 356	C 178	N 89	O 89	0	0

• Molecule 32 is a protein called Splicing factor 3B subunit 5.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
32	7	66	Total 264	C 132	N 66	O 66	0	0

 $\bullet\,$ Molecule 33 is a protein called U4/U6 small nuclear ribonucleoprotein Prp3.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
33	J	167	Total 668	C 334	N 167	O 167	0	0

• Molecule 34 is a protein called U4/U6 small nuclear ribonucleoprotein Prp4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
34	K	343	Total 1371	C 686	N 343	O 342	0	0

• Molecule 35 is a protein called Pre-mRNA-processing factor 6.

Mol	Chain	Residues		Ator	AltConf	Trace		
35	Ν	579	Total 2316	C 1158	N 579	O 579	0	0

 $\bullet\,$ Molecule 36 is a protein called U4/U6 small nuclear ribonucleoprotein Prp31.

Mol	Chain	Residues	Atoms				AltConf	Trace
36	L	226	Total 904	C 452	N 226	O 226	0	0

• Molecule 37 is a protein called NHP2-like protein 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
37	М	125	Total 500	$\begin{array}{c} \mathrm{C} \\ 250 \end{array}$	N 125	O 125	0	0

• Molecule 38 is a protein called Thioredoxin-like protein 4A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	О	139	Total 556	C 278	N 139	O 139	0	0

• Molecule 39 is a protein called U4/U6.U5 tri-snRNP-associated protein 2.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
39	W	463	Total 1852	C 926	N 463	O 463	0	0

• Molecule 40 is a RNA chain called U4snRNA.

Mol	Chain	Residues		A	AltConf	Trace			
40	Ι	117	Total 2491	C 1112	N 439	O 823	Р 117	0	0

• Molecule 41 is a protein called Probable ATP-dependent RNA helicase DDX23.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
41	Х	414	Total 1661	C 833	N 414	O 414	0	0

• Molecule 42 is a protein called Pre-mRNA-processing-splicing factor 8.

Mol	Chain	Residues		Ato	AltConf	Trace		
42	А	2221	Total 8884	C 4442	N 2221	0 2221	0	0

• Molecule 43 is a protein called 116 kDa U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues		Ator	AltConf	Trace		
43	С	818	Total 3272	C 1636	N 818	0 818	0	0

• Molecule 44 is INOSITOL HEXAKISPHOSPHATE (three-letter code: IHP) (formula: $C_6H_{18}O_{24}P_6$).

Mol	Chain	Residues	A	AltConf			
44	А	1	Total	С	0	Р	0
	11	1	36	6	24	6	Ū

• Molecule 45 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Atoms								
45	С	1	Total	С	Ν	0	Р	0				
10	U	-	32	10	5	14	3	Ŭ				

• Molecule 46 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
46	С	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain B: 38% 44% 16% 86% 12%

K1977 G1978 M1988 E1989 E1991 E1992 R1993 R1995	ACOLO D2125 VAL LVS CLU GLU GLU GLU GLU ASP SER ASP SER ASP ASP	
• Molecule 3: U5 small nuclear ri	bonucleoprotein 40 kDa pro	otein
Chain E:	81%	• 16%
MET TLE GLU GLU GLN CLN CLN CLN CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD CLV FRD FRD FRD FRD FRD FRD FRD FRD FRD FRD	LEU GLY GLY GLY GLY GLY GLY GLN GLN ALA ALA ALA ALA ALA ALA CLN THR CLN THR CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ALA ALA ALA PRO PRO ARC CYSS SER SER CAS CYSS CYSS ARC CYSS CYSS CYSS CYSS CYSS CYSS CYSS CY
L61 L61 L61 L61 L63 C39 C39 C39 C39 C39 C39 C39 C3	103 1163 1163 1179 1181 1181 1181 1181 1181 1181 1181	1193 11204 8205 8205 9206 9266 10265 10266 10265 10266 10265 10266 10000000000
K275 F277 Q276 Q279 Q279 C297 S296 C297 S296 C297 S296 D305 D305 D305 C297 S214 C297 S214 C297 S215 S215 C297 S215 S215 S215 S215 S215 C297 S215 S215 S215 S215 S215 S215 S215 S215	L320 Y321 K321 L3222 L3222 L3222 C3252 A327 A327 P340 P340 P340 P340 C354 C354 C356 C356 C356 C356 C356 C356 C356 C356	d L L
• Molecule 4: Small nuclear ribor	ucleoprotein Sm D2	
Chain a: 66%		34%
MET NER SER ASN ASN LUE PRO PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	T300 T77 P77 P77 P77 P77 P77 P77 P77	LYS LYS ALA
• Molecule 4: Small nuclear ribor	ucleoprotein Sm D2	
Chain k: 719	% %	28%
MET SER LEU LIEU LINS PRO LIVS SER MET THR MET THR MET CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	F24 F24 T26 T26 T26 F28 F28 S30 V31 T33 T33 T33 S35 V36 V36 V38 N38 N38	740 441 144 144 144 144 145 145 145 153 153 153 155 153 155 155 155 155 15
R61 H62 C63 N64 N65 L67 E68 N65 E68 N65 N65 N70 V70 V70 V70 E72 E76 V73 N73 SE76 S175 S175 S175 S175 S175 S175 S175 S175	GLY CLYS CLYS CLYS CLYS CLYS CLYS SER N91 N91 N92 N93 N93 N93 N93 N93 N93 N95 N93 N93 N93 N93 N93 N93 N93 N93 N93 N93	Kise Kise Fioo Fioo Fioo Fioo Fioo Fioo Fioo Fio
• Molecule 4: Small nuclear ribor	ucleoprotein Sm D2	
Chain P: 61%		37%
MET SER LEU LEU LEU ASN PRO PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	T26 T26 T75 T75 T75 T75 T75 T75 T75 T75	G103 V109 L114 GLX LYS LYS
• Molecule 5: Small nuclear ribor	ucleoprotein F	
Chain b:	85%	15%

Chain d:	91%		9%

MET SER LYS LYS A4 A4 A4 A4 A5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	N55 A72 LEU GLU VAL		
• Molecule 7: Sm	all nuclear ribonucleoprotein	G	
Chain n:	89%	11	1%
MET MET LYS A4 H5 P6 P6 P7 E8 K10 K10	F12 M13 D14 C117 K15 K16 L17 S18 C119 K20 K20 C23 C23 C24 K20 C23 K20 C24 K20 C24 K20 C24 K20 C24 K20 C25 K20 C25 K20 C25 K20 C25 K20 C25 K20 C25 K15 K15 K15 K15 K15 K15 K15 K15 K15 K1	228 229 230 130 131 131 133 133 133 133 133 133 1	142 143 144 145 145 145 145 145 148 148 148 148 148 148 148 148
V61 162 R63 664 N65 S66 167 167 168 M69 M69	E71 A72 E74 R75 V76		
• Molecule 7: Sm	all nuclear ribonucleoprotein	G	
Chain S:	93%		
MET SER LYS A4 N22 S51 S66 L73	R75 N76		
• Molecule 8: Sm	all nuclear ribonucleoprotein	Sm D3	
Chain e:	62%	38%	_
MET SER 11LE G4 B81 MET LVS SER MET LVS SER ASV	LYS ASN GLIY GLIY SER GLIY GLIY ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG GLY ARG GLY ARG GLY MET MET ARG CLY ARG CLY ARG CLY ARG ARG ARG ARG	
• Molecule 8: Sm	all nuclear ribonucleoprotein	Sm D3	
Chain h:	63% 63%	37%	
MET SER ILE 64 V5 P6 V9 V9 V9 V9	E12 A13 E14 A13 E14 C15 C17 C119 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	Y28 R29 G30 K31 L32 E34 A35 E34 A35 M35 M37 M39 M37 M39 M37 M32 C41	Q42 M43 N45 N45 N45 N45 N45 N48 N48 N48 N48 N48 N48 N58 N58 N58 N58 N58 N58 N58 N58 N58 N5
61 6 62 66 66 66 66 67 66 68 66 70 69	71 72 75 75 75 75 75 75 75 75 75 75 75 75 75	22 22 22 22 22 22 22 22 22 22 22 22 22	4 H H H H H H H H H H H H H H H H H H H
	THT U U U U U X X KU V U X U X U X U X U X U X U X U X U X	< _ < 0 0 0 0 < 0 < 0] < < H]] < 0	א א א מיש
• Molecule 8: Sm 5%	all nuclear ribonucleoprotein	Sm D3	
Chain T:	56%	44%	_

• Molecule 10: Small nuclear ribonucleoprotein Sm D1

Chain g:	78%	22%
MET K2 S35 MET N37 V83 V83 K91	R92 E93 A94 A94 A95 A11 A11 A11 A11 A11 A11 A11 A11 A11 A1	ARG
• Molecule 10: S	mall nuclear ribonucleoprotein Sm D	1
Chain j:	69% 69%	31%
M1 K2 L3 L3 V4 R5 F6 R6 M8 K9 K9	S111 S111 H12 E13 F114 T116 T117 E117 E118 M20 M21 M21 M21 M21 M22 M22 M22 M22 M22 M22	 G31 G31 V32 D33 V34 S35 V34 S35 M35 M35 M36 M37 M36 M41 M42
R61 662 N63 N64 165 R66 Y67 F68 F68	P71 D72 S73 P75 P75 D77 L78 L178 C178 C178 C178 C178 C178 C178 C178 C	ALA ALA ALA ALA ALA ALG GLY GLY ARG GLY ARG ARG ARG ARG
• Molecule 10: Sr	mall nuclear ribonucleoprotein Sm D	1
Chain V:	64% 59	% 31%
MET K2 K20 N21 S59 N63 N63 N63 N63	D77 178 178 0.00 1.178 0.01 1.178 0.01 1.178 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG
• Molecule 11: U	6snRNA	
Chain F:	39% 21% ·	36%
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	U51 U52 U53 A53 G57 G57 A70 G71 A76 G72 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76
A A UBS UBS 090 690 A91 A92 693 C93	C C C C C C C C C C C C C C C C C C C	
• Molecule 12: U	6 snRNA-associated Sm-like protein	LSm2
Chain q:	95% 91%	• 5%
M1 L2 F3 F5 F6 F7 F7 S9 S9 S9 S9 S9	V11 C12 C12 C12 V15 V15 V15 V15 C12 C22 C26 C26 C26 C26 C26 C26 C2	 S31 V32 V32 Q34 Q34 Q34 Q34 Q34 Q34 Q34 Q34 Q32 Q34 Q34 Q32 Q34 Q32 Q32 Q32 Q32 Q32 Q32 Q32 Q32 Q34 Q32 Q34 /ul>
F61 162 R63 664 S65 S65 V66 V66 Y63 Y69	771 172 172 172 175 179 179 181 182 183 183 183 183 183 183 183 183	dLN GLN GLN GLN
• Molecule 13: U	6 snRNA-associated Sm-like protein	LSm3
Chain r:	74% 72%	• 26%

W O R L D W I D E PROTEIN DATA BANK

• Molecule 21: U2 small nuclear ribonucleoprotein A'

ALA GLY VAL HISS PRO PRO PRO PRO PRO GLY VAL HISS PRO HISS PRO GLY VAL HISS PRO HIS

• Molecule 25: Splicing factor 3A subunit 3

••	••	•	•	••	•	••		••		•	••	• •	•	•	•	•	• •			••	••	•	••	•	••	•	•	••		••	•	••	••	••	••	•	••		••	••	•••
P421	Q422 1.423	Y424	V425	A426 C427	G428	R429 G430	P431	R432	S433 S434	L435	R436	V437 1438	R439	HIS	L442	E443	V444	5445 F.446	M447	A448	V 449 S 450	E451	L452 P453	G454	N455	r450 N457	A458	V459 4460	T461	V462 P463	R464	H465 T166	1400 E467	D468	E469 F470	D471	A472 Y473	1474	I475 V476	S477	r 410 V479 N480
	2 g	5 4	0	200	<u></u>		1	5	03 4	1 2 2	90	2 α	6	•		3	4	0 2	2	8	6 6	• • •	сц (5 4	ц	به ۱۹	- ⁰⁰	6		5	6 4	22 52	9 2		6 0		2	34	e e		
A46	T48 1.48	V48	L48	S48 149	G48	E46 T40	V45	E49	E49 V49	T49	D49	S49 C40	F49	L50	G50 TEC	T5C	P50	T50	S5C S5C	CEC	S5C	L51	G51	D51 D51	A51	L51 VF1	q51	V51	752 P52	D52	I52	R52	H52 T53	R52	A52	K53	R53		E53 UF3	K53	T53 P53 G54
••	••	•	•	••		••		••		•	••	••	•	••	••	•	••	••		•	• •		••			••		••	•	••		•	••		••	•	••	•	••		•••
454.1	5542 1543	1544	1545	<u>К546</u> тс47	4548	V549 V550	1551	3552	1553 7554	1555 1555	1556	4557 558	1559	3560	3561 7562	1563	1564	1565	1267	1568	0569 e70	3571	3572	1574 1574	N575	3576 VE77	T578	3579 5579	(581	1582	1584 5584	A585	0586 0587	1588	02589	3591	1592	4593 N594	7595 0506	597	1598 1599 1600
			-					н						U			-			-		4 01	0	5 4	-	ш ,				-	2, 01					- 01					
•	••		•	• •		••		••		•	•	• •	•	••		•	•			-	• •		••	••				••	••	••	••	٠									
R601	S602 R603	F604	L605	A606 V607	G608	L609 V610	D611	N612	T613 V614	R615	I616	I617 S618	L619	D620	P621 S622	D623	C624	L625	4020 P627	L628	S629 Mean	0631	A632	L633 P634	A635	Q636 D637	E638	S639	L640 C641	I642	V643 E644	M645	GLY	GLU	CLN	ASP GLU	LEU GLY	GLU	GLY	ILE	
Y.	903 100	64	665 80	567	868	570	173	72 77	24	875	576 77	378	379	80	001 182	83	384 or	86	87	88 6	200 00	91 •	3 8		98	97 90	26 66	8	10 10 10	8	04 05	06	07	3 8	10	1 2	13	14 15	16	18	20
GI	Le	Ye	Γe	DN I	ge		Ne	96 Ve	Le	Γe	Re		Γe	DG	Ne ve	Τ6	8 6		Se	Å Å	Re	Te	A L	E E	S S	Re	Ve	K7	L7 F7	R7	V7 R7	M7	20.5	50	E7	A (V7	17	A7 M7	S7 22	R7	S7 W7
••	••	•	•	••		••		••	••	•	•	••	•	••	••	•	•	• •		•	• •	•••	••			••		••	••	••	••	•	••		••	•	••	••	••		•••
L721	S722 V723	S724	Y7 25	Q7 26 <7 27	R7 28	F7 29 H7 30	L731	T732	P733 L734	S735	Y736	E737 T738	L739	E740	F741 A742	S743	G744	F745	A/ 40 S747	E748	Q749 С7ЕО	P751	E752	G753 1754	V755	A756 1757	5758	T759	N7 61	L762	K/ 63 I764	L765	A766 1.767	E7 68	K7 69	G771	A772	VI 13 F774	N775 0776	V777	A778 F779 P780
	0 g	2 4	ي	9 N	- ω	• •	• • •	сч (ω 4	<u>ب</u>	0	⊳ α	• •	•	- -	• •	4	ы Бос	0 1-	00	0 C		0 13	20 4	ц	9 F	- 00	о (N	20 4	<u>ب</u>	9 1					ų	9 F	● ● ∞ 0	
L78	979 778	T78	P78	R78 K78	F78	V78 179	6 /H	P79	E79 S79	6 Z N	079	L79 T79	179 179	180	E80 TRO	D80	H80	N80	Y80 Y80	T80	E80	T81	K81	A81 081	R81	K81 D81	1981 1981	M81	A82 E82	E82	M82 V82	E82	A82 482	GLY	ASP	ARG	CLU L83	A83	A83 E83	M83	A84
•			•			••		••		•	•		•	••		•	•						••					••		•		•			• •	•	••		••		
1841	842 843	1844	1845	1846 847	-01 	1849 1850	[851	-852	1853 1854	9855	(856	1857 1858	1859	1860	1861 1862	4863	3864	1865	1867 1867	1868	1869	971	1872	1873 1874	1875	1876 877	878	879	/880 3881	882	1883 1884	1885	1886	888	1889	1891	1892 1000	/ 893 3894	1895	3897	1898 1899 1900
			-			Щ		щ	0 -	Ч	4		~~	0	0 2		01			-							- -			-	- 0	~				· -		- 0	H H	4 01	
••	••	•	•	• •	-	••		••	••	•	•	••	•	••	••	•	•	• •	••	•••	• •	•	••			• •		••	••	••	••	•	••		• •	•	••	••	••		•••
E901	D902	Y904	V905	L906 V907	G908	V909 A910	K911	D912	L913 T914	L915	N916	P917 P918	S919	V920	A921 G922	G923	F924	V925	T927	Y928	K929	V931	N932	G934	E935	K936	E938	F939	L940 H941	K942	T943 P944	V945	E946 E947	V948	P949	A951	1952	P954	F955 D056	G957	R958 V959 L960
																									_																
	0 0	o 4	ų	9 N	- ω	• •		0	m 4	مر ۱	9	μ α	• თ	•	ਦ ਦ	• •	4	ب م	0 F		ი ი		0 0	n 4	ц	9 1	- 00	<u> </u>	3 2	02	04	05	06	8	0 0 7	- 	12	13	15 16	17	19 20
196	969 V96	965	K96	1 96 1 96	R96	797 797	D97	L97	697 K97	K97	K97	L97 197	R97	K98	008 008	198 198	K98	B e H	A98	N98	798 700	66S	66D	660 661	T99	199 199	66H	R99	110 110	V10	510 D10	V10	Q10 E10	S10	F10	W10	V10	K10 Y10	K10 B10	N10	E10 N10 Q10
			•					•			•		•	•		•	•						•					•		•		•									
021	022	024	.025	.026	028	029	031	032	033	035	036	.037 038	039	040	.041 042	043	.044	.045	.040 .047	.048	.049 0E0	.051	.052	.054	.055	.056 057	058	.059	.061	062	.064	065	.066 067			H Y	N S	A. U	42 43	5g X	
1	H F	i E	Ā		Ϋ́Ε	.Y.	RJ	M	> F	i E	Α.	Ω F	13	G	Υ C	Ϋ́Ε	N	A.	41 e	D	Ч	5	N	- D	N.	> a	1	L L	Υ Ν Γ	H	N D	ä			Id	11 GI	A: L	AL	T1 A5	GI	
	•	••	••		••		••		•	••			• •			••		•	••	••		••	••	•	••		••	••	••	••	••	••	•	••	•	••	••	••	••	••	•••
, EU	V1083	31084	A1085	1087	K1088	1090	V1091	11092	V1094	Y 1095	H1096	1098	51099	11100	.1102	\$1103	11105	<pre>(1106)</pre>	T1107	r1108 .1109	1110	1111	11113	31114	E1115 31116	.1117	V1118	r1119	r1121	L1122 \$1123	11124	51125 1126	31127	11128	11130	91131	F1132 [1133	31134	H1135 E1136	01137 11138	01139 71140
			~ 0.			. — <u>ш</u>		. 2	6						-			- Ei				C																-01	ц Ц Ц		
•	••			• •		••		••		•	••	• •	•	••	••	•	••			•	• •		••	••		• •		••	•	••	•	••	••		• •	•		•	••		•••
F1141	Q1142 H1143	V1144	E1145	M1146 H1147	L1148	R1149 S1150	E1151	H1152	P1153	L1155	C1156	G1157 P1158	D1159	H1160	L1161 S1162	F1163	R1164	S1165	Y1167	F1168	P1169 W1170	K1171	N1172	V1173 11174	D1175	G1176	L1178	C1179	E1180 Q1181	F1182	S1183	M1 185	E1186 P1187	N1 188	K1189	K1191	N1 192	S1193	E1195 E1196	L1197	D1198 R1199 T1200

• Molecule 29: Splicing factor 3B subunit 4

 \bullet Molecule 36: U4/U6 small nuclear ribonucleoprotein Prp31

Chain	L:	45%		55%	_
MET SER LEU ALA	GLU	LEU ALA ASP ALA ASP CLU CLU CLU CLU CLU CLU CLU CLV CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	GLU GLU GLU GLU GLU ALA ALA ALA ALA ALA ALA ALA GLU GLU GLU GLU GLU	LEU ASP SER GLY ASP GLY SER VAL LYS THR THR THR	ALA LYS LEU TRP ASP SER LYS MET PHE
_					
ALA GLU ILE MET	LYS	GLU TTRE TTRE TTRE TTRE TTRE TTRE TTRE TTR	ASC E-152 M255 H256	GLY PHE SER THR SER VAL LEU PRO PRO HIS THR	C272 D276 Q281 Q283 Q332 GLU PR0
PRO PRO VAL LYS	VAL	PR0 LEU PR0 ALA ALA CLEU CLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	ARG LYS MET MET MET CYS GLU GLU CLEU CLEU CLEU CLEU CLEU CLEU CLEU CL	ARA ARG ARG ARG ARG ARG CAC CLU CLU CLU CLU	ASP ALA TYR GLU GLU ASP LEU CLY PHE
SER LEU GLY HIS	GLY T VS	SER GLY SER GLY GLY CLI ARG CLI THR THR ARG CLU CLI CLI ARA	ILE SER LYS LYS LYS CLN CLN CLN CLN CLN CLN CLN CLN SER SER VAL	GLY GLY GLY GLY CLY CLY CLY ASP ASP ASP ASP ASP ASP SER	GLY THR ALA SER SER VAL ALA PHE
THR PRO LEU GLN	TEU	ILE VAL VAL ASN PRO GLU CLYS VAL ALA ALA ALA ASN ASN CLU ASN CLU CLU	PHE SER SER SER MET MLA ALA ALA ALA ALA CLU VAL LYS CLY CLYS CLY	LEU MET SER THR	
• Mol	ecu	le 37: NHP2-like protein	1		
Chain	М		93%		5%•
MET THR GLU A4	K9	111 12 169 169 169 182 128			
• Mol	ecu	le 38: Thioredoxin-like p	rotein 4A		
Chain	O	•	95%		
MET S2 F30	E74	D77 F78 C79 C97 A140 ARG TYR			
• Mol	ecu	le 39: U $4/$ U $6.$ U 5 tri-snR	NP-associated protein	n 2	
Chain	W	5% : 61%	1	7% • • 1	8%
MET SER GLY ARG	LYS	GLU SER ARG GLY SER ARG GLY SER ARG GLU SER ARG SER SER ARG SER SER	GLY ARG VAL LYS ARG ARG ARG ARG ARG ARG CLU PRO CLU PRO CLU	SER SER ARG GLY SER PRO PRO VAL VAL VAL	ARG GLU PHE GLU PRO ALA SER ALA ARG
				•	_
GLU ALA PRO ALA	VAL	PRD MALE VALE VALE VALE ARG CUU VALE ARG CUU VALE ARG CUU VALE ARG CUU VALE ARG CUU VALE ARG CUU VALE ARG CUU	ARG GLU VAL ARG ALA ALA ALA ALA ARG GLY ARG GLV ASP GLV	858 8103 8103 8104 8104 8106 8121 8125	0144 01446 R1466 N166 T169
175 176 178 178	183	193 193 205 205 205 205 205 205 205 205 205 205	2669 2668 2668 2668 2668 2668 2668 2668	31 11 11 11 11 11 11 11	333 333 333 333 333 333 333 333 333 33
	Q		ан <mark>оор 2 ж н ж к </mark> х х х х х х х х х х х х х х х х х х	E HOWXXH H	<pre>< add def /pre>
1344 V345 T346	1.040 1350 1351	R354 1355 1355 1355 1355 1355 1355 1355 1	Q380 E381 E381 E381 B394 L395 P395 P395 P399 F401 ¥401 ¥401 ¥402	E404 E405 E405 E406 1410 1410 0412 V413 P414 P414 L415	F416 N417 1418 1419 1426 1426 1426 1426 1426 1426 1434
F441 K445	L440 P447 D110	R456 F457 T458 K459 K463 F463 F463 K466 K466 K466 K466 N477 V478 V478	R480 R481 F483 S483 S485 E486 E486 E486 R491 N502 N502 K508	P609 8510 6511 6512 6528 1532 153	R553 D556 D558 D558 D558 E559 T560 M561 A565
			PROTEIN DATA BANK		

• Molecule 40:	: U4snRNA			
Chain I:	38%	31%	13%	19%
A1 62 62 03 04 04 01 612 612	0113 0114 015 016 016 01 02 022 023 025 025 026	A33 U36 042 043 043 044 045 045 045 048 048 048 048	U U U U U U U S C S S C S S C S S C S S C S S C S S C S	U62 U63 A A A A A A U63 U U U U U U U U U U U U U U U U U U U
000445400 80 80	C84 C85 C86 C92 A91 C92 C92 A103 A103 A103	U107 0108 0108 0110 0111 01114 01114 01115 01115 01115 01115 01115 01117 01118	U120 U121 U122 U123 U123 G125 A126 C127 C133	и С С С С С С С С С С С С С С С С С С С
• Molecule 41:	: Probable ATP-dep	pendent RNA heli	case DDX23	
Chain X:	50%		50%	
MET ALA GLY GLU CLU LEU LYS LYS LYS LYS	ARG ASP ASP ASP SER PRO PRO CLU CLYS CLU CLYS CLU CLYS ARG SER ARG SER ARG	PRO ASP ASP GLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	SER PRO SER LYS ASP ASP LYS ARG HIS	SER ASP ASP ARG ARG GLY GLY SER SER SER ARG SER
SER ARG SER ARG SER LYS SER ALA GLU GLU	GLU ARG ARG ARG CLY GLU ARG CLU ARG ARG ARG ARG	ASN LYS LYS ASP ASP ASP ASP ASP CY ASP GLY	ARG ASP LYS ASP ASP ASP ASP ASP SER SER SER SER	SER PRO GLY ARG GLY ARG CLY ARG CLY SER PHE LYS SER ARG LYS SER ARG CLY
ASP ARG ASP ASP SER LYS LYS ASP GLU GLU	GLU GLU GLY GLY GLY GLY LYS PRO CLN PRO CLN FRO CLN FRO CLU	GLU LEU LEU LEU LYS LYS LYS LYS LYS GLU GLU GLU GLU	ALA LYS PRO LYS PHE LEU SER LEU SER ALA	ARG GLU GLU GLU ALA ALA LEU LEU LYS ARG GLN GLN GLN
VAL GLU GLU GLU ARG ARG ARG ARG CLU GLU GLU	GLU GLU LYS LYS CLYS GLN GLN GLN GLN GLN GLN GLY GLY GLY GLY MET	LEU GLU GLU GLU GLU GLU ARG GLU ARG ARG	GLU ARG GLU GLU GLU GLU GLV ASN	GLU ASP GLU GLU GLU GLU LYS ILE GLU GLU GLU
LYS ASP LYS SER LYS GLU GLU HIS ALA ALA	LYS GLU TYR ARG GLY CLEU GLY LYS LYS LYS ARG ARG ARG ARG ARG	HIS LEU ASN ASP ARG LYS PHE PHE PHE TRP AISP	SER GLU ASP THR SER ILE ASP ASP ASN	LEU LYR LYS GLU GLU ARG GLU GLN CLEU LEU CLEU
ARG GLY FHE CLE ALA ALA ALA ALA ALA ALA ALA ALA ALA	GLN GLN CALN CALN CALN CALN CALN CALN CALN CA	LYSS ARG ARG ARG CIU CLEU CIU CIU CIU CIU CIU CIU CIU CIU	ARG LEU LEU LEU LEU ARG LEU LEU CYS GLU	LYS LYS GLN W352 W352 GLN E464 G518 G518 G518 G518 CYS CYS
ILE GLY SER ALA GLY CVS FRO FRO GLU ARG	VAL E640 E643 F643 F661 F666 C666	E685 L694 HIS GLY GLY GLV GLU GLU GLU GLN	V723 ALA GLY ARG GLY I728 D728 D728 VAT S734	G753 ♦ G753 ♦ P781 ♦ S790 CYS PR0 PR0 CYS PR0 CUU LEU LEU ALA
PRO ASP ALA GLN CVS CVS PRO GLY THR THR	LEU THR LYS LYS ARG GLU GLU THR THR THR THR ALA			
• Molecule 42:	: Pre-mRNA-proces	sing-splicing facto	or 8	
Chain A:		86%		9% • 5%
MET ALA ALA GLY CLY PHE PRO PRO GLY PRO	GLY ASN PRO PRO GLY GLY PRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	SER SER GLU CLV CLU CLU CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	GLN LEU GLN GLN ALA ALA ALA GLU GLU	ARG LYS PHE GLY PHE VAL ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
K80 F81 R82 B84 D84 Y88 Y88	R114 1122 F166 E186 L188 L188 1191	A201 P212 F230 F230 F230 ASP ASP ASN TLE	GLN ASP ASP D292 1308 1308 1308	N321 N321 V332 V332 V332 V332 V332 V332 V332 V
1369 8360 1373 1373 1373 1373 1373	E376 E377 E377 E377 E379 P381 7397 T398 T397 T398 T414 R414 R414	0423 1424 1425 1425 1426 1425 1441 1443 1444 1443 1444	R470 Y471 L472 F473 R474 F481 F481	P526 P526 P526 P526 P526 P526 P548 A543 A543 C547

W O R L D W I D E PROTEIN DATA BANK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	186162	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	45	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	0.116	Depositor
Minimum map value	-0.035	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	535.2, 535.2, 535.2	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.338, 1.338, 1.338	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GTP, IHP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	В	0.18	0/2697	0.76	0/4193
2	D	0.32	0/7493	0.57	0/9361
3	Е	0.67	0/1195	0.71	0/1492
4	Р	0.23	0/298	0.48	0/370
4	a	0.23	0/316	0.48	0/392
4	k	0.70	0/338	0.73	0/419
5	Q	0.24	0/291	0.49	0/363
5	b	0.24	0/299	0.49	0/373
5	m	0.78	0/295	0.76	0/367
6	R	0.22	0/313	0.49	0/390
6	с	0.22	0/313	0.49	0/390
6	1	0.63	0/315	0.75	0/392
7	S	0.24	0/297	0.51	0/371
7	d	0.24	0/281	0.52	0/351
7	n	0.55	0/270	0.63	0/334
8	Т	0.23	0/287	0.49	0/358
8	е	0.23	0/317	0.52	0/396
8	h	0.47	0/318	0.56	0/394
9	U	0.22	0/254	0.48	0/314
9	f	0.23	0/258	0.48	0/320
9	i	0.47	0/290	0.65	0/359
10	V	0.22	0/333	0.47	0/416
10	g	0.22	0/378	0.46	0/471
10	j	0.56	0/327	0.68	0/407
11	F	0.26	0/1639	0.72	0/2545
12	q	0.42	0/359	0.67	0/447
13	r	0.46	0/298	0.77	0/369
14	S	0.34	0/294	0.61	0/364
15	\mathbf{t}	0.42	0/298	0.57	0/369
16	X	0.43	0/279	0.66	0/347
17	У	0.38	0/258	0.61	0/319
18	Z	0.42	$0/\overline{242}$	0.65	0/299

Mal	Chain	Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
19	G	0.62	2/954~(0.2%)	0.87	0/1477	
20	Н	0.77	11/2576~(0.4%)	1.24	32/4003~(0.8%)	
21	0	0.63	0/647	1.42	0/807	
22	р	0.62	0/375	1.20	0/467	
23	u	0.22	0/493	0.42	0/611	
24	V	0.23	0/392	0.55	0/483	
25	W	0.24	0/1767	0.46	0/2199	
26	1	1.03	4/4112~(0.1%)	0.81	0/5126	
27	2	0.72	0/738	0.72	0/912	
28	3	0.85	0/4689	0.76	0/5849	
29	4	0.66	0/311	0.70	0/387	
30	5	0.77	0/431	0.77	0/537	
31	6	0.75	0/355	0.70	0/442	
32	7	1.01	0/263	0.77	0/327	
33	J	0.68	0/664	0.66	0/823	
34	Κ	0.73	0/1367	0.79	0/1702	
35	Ν	0.55	0/2297	0.68	1/2838~(0.0%)	
36	L	0.34	0/902	0.51	0/1124	
37	М	0.38	0/499	0.62	0/622	
38	0	0.74	0/555	0.73	0/692	
39	W	0.50	0/1851	1.16	7/2312~(0.3%)	
40	Ι	0.23	1/2779~(0.0%)	0.70	0/4319	
41	Х	0.43	0/1655	0.56	0/2062	
42	A	0.62	2/8880~(0.0%)	0.72	2/11093~(0.0%)	
43	С	0.65	1/3270~(0.0%)	0.73	0/4084	
All	All	0.59	21/64262~(0.0%)	0.75	42/83350~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	D	0	1
4	k	0	1
16	Х	0	1
25	W	0	1
26	1	0	15
27	2	0	2
28	3	0	13
30	5	0	1
31	6	0	2

Mol	Chain	#Chirality outliers	#Planarity outliers
32	7	0	1
34	Κ	0	1
35	Ν	0	6
39	W	0	62
43	С	0	1
All	All	0	108

All ((21)	bond	length	outliers	are	listed	below:
· • • • • •	<u> </u>	Dona	10118011	outiforb	our o	10000	0010.0.1

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
42	А	597	LYS	C-N	10.75	1.58	1.34
20	Н	142	С	C1'-N1	7.31	1.59	1.48
26	1	1243	PRO	N-CA	-7.12	1.35	1.47
42	А	877	ALA	C-N	7.10	1.50	1.34
20	Н	182	U	C1'-N1	6.93	1.59	1.48
20	Н	150	U	C1'-N1	6.69	1.58	1.48
20	Н	151	С	C1'-N1	6.50	1.58	1.48
20	Н	141	С	C1'-N1	6.43	1.58	1.48
20	Н	148	С	C1'-N1	6.40	1.58	1.48
20	Н	97	G	C1'-N9	-6.38	1.38	1.46
20	Н	184	С	C1'-N1	6.38	1.58	1.48
26	1	719	TYR	C-O	-6.29	1.11	1.23
26	1	944	SER	N-CA	-5.69	1.34	1.46
40	Ι	63	U	C1'-N1	5.68	1.57	1.48
26	1	718	PRO	CA-C	-5.58	1.41	1.52
20	Н	48	А	C1'-N9	-5.49	1.39	1.46
19	G	131	U	C1'-N1	5.47	1.56	1.48
20	Н	65	U	C1'-N1	5.45	1.56	1.48
43	С	661	THR	C-N	-5.12	1.22	1.34
19	G	122	U	C1'-N1	5.09	1.56	1.48
20	Н	110	А	C1'-N9	-5.06	1.39	1.46

All (42) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
20	Н	162	U	N3-C2-O2	-9.04	115.88	122.20
20	Н	169	С	P-O3'-C3'	8.24	129.58	119.70
35	Ν	369	LEU	C-N-CA	-8.00	88.41	122.00
42	А	877	ALA	O-C-N	7.84	135.24	122.70
20	Н	114	A	OP2-P-O3'	7.27	121.19	105.20
20	Н	149	А	OP2-P-O3'	7.26	121.18	105.20
20	Н	183	G	OP2-P-O3'	7.24	121.12	105.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
20	Н	181	G	OP2-P-O3'	7.23	121.10	105.20
20	Н	141	С	OP2-P-O3'	7.22	121.08	105.20
20	Н	113	G	OP2-P-O3'	7.21	121.07	105.20
20	Н	182	U	OP2-P-O3'	7.19	121.02	105.20
20	Н	148	С	OP2-P-O3'	7.18	121.00	105.20
20	Н	150	U	OP2-P-O3'	7.18	121.00	105.20
20	Н	149	А	O3'-P-O5'	-6.86	90.97	104.00
20	Н	155	С	P-O3'-C3'	6.84	127.91	119.70
20	Н	183	G	O3'-P-O5'	-6.82	91.05	104.00
20	Н	182	U	O3'-P-O5'	-6.80	91.08	104.00
20	Н	141	С	O3'-P-O5'	-6.79	91.09	104.00
20	Н	148	С	O3'-P-O5'	-6.79	91.11	104.00
20	Н	113	G	O3'-P-O5'	-6.75	91.18	104.00
20	Н	181	G	O3'-P-O5'	-6.75	91.18	104.00
20	Н	114	А	O3'-P-O5'	-6.74	91.20	104.00
20	Н	150	U	O3'-P-O5'	-6.72	91.23	104.00
39	W	354	ARG	O-C-N	6.56	133.19	122.70
39	W	427	GLU	N-CA-C	6.51	128.57	111.00
20	Н	162	U	N1-C2-O2	6.20	127.14	122.80
42	А	877	ALA	CA-C-N	-5.99	104.01	117.20
20	Н	172	С	P-O3'-C3'	5.80	126.66	119.70
39	W	457	PHE	N-CA-C	5.78	126.61	111.00
20	Н	156	U	P-O3'-C3'	-5.78	112.77	119.70
39	W	457	PHE	C-N-CA	5.55	135.59	121.70
20	Н	157	G	O4'-C1'-N9	-5.38	103.90	108.20
39	W	364	ASP	N-CA-C	5.33	125.40	111.00
20	Н	156	U	OP2-P-O3'	5.28	116.83	105.20
20	Н	160	А	P-O5'-C5'	-5.27	112.47	120.90
20	Н	170	С	N3-C4-C5	-5.18	119.83	121.90
39	W	394	ASP	C-N-CA	5.17	134.63	121.70
20	Н	170	С	O4'-C1'-C2'	-5.16	100.64	105.80
20	Н	162	U	C2-N3-C4	-5.13	123.92	127.00
20	Н	157	G	P-O5'-C5'	-5.10	112.75	120.90
39	W	427	GLU	C-N-CA	-5.09	108.98	121.70
20	Н	156	U	C4'-C3'-C2'	5.01	107.61	102.60

There are no chirality outliers.

All (108) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
26	1	1025	LYS	Peptide
26	1	110	PRO	Peptide

Mol	Chain	\mathbf{Res}	Type	Group
26	1	1122	THR	Peptide
26	1	1127	THR	Peptide
26	1	1179	ASP	Peptide
26	1	1199	VAL	Peptide
26	1	220	GLN	Peptide
26	1	257	THR	Peptide
26	1	415	LEU	Peptide,Mainchain
26	1	545	GLU	Peptide
26	1	689	ILE	Peptide
26	1	717	THR	Peptide
26	1	941	ASN	Peptide
26	1	944	SER	Peptide
27	2	553	MET	Peptide
27	2	558	ARG	Peptide
28	3	261	PHE	Peptide
28	3	366	ASP	Peptide
28	3	468	ASP	Peptide
28	3	530	ASP	Peptide
28	3	534	ASN	Peptide
28	3	552	ARG	Peptide
28	3	670	GLN	Peptide
28	3	678	VAL	Peptide
28	3	74	THR	Peptide
28	3	885	ASN	Peptide
28	3	916	ASN	Peptide
28	3	980	LYS	Peptide
28	3	986	ILE	Peptide
30	5	29	LYS	Peptide
31	6	89	VAL	Peptide
31	6	91	LEU	Peptide
32	7	74	GLN	Peptide
43	С	736	GLY	Peptide
2	D	430	LEU	Peptide
34	Κ	374	HIS	Peptide
35	N	14	PRO	Peptide
35	N	773	ASN	Peptide,Mainchain
35	N	807	CYS	Peptide,Mainchain
35	Ν	838	GLU	Peptide
39	W	103	ARG	Peptide,Mainchain
39	W	105	CYS	Peptide
39	W	121	GLU	Peptide
39	W	144	GLN	Peptide

Mol	Chain	Res	Type	Group
39	W	175	LEU	Peptide
39	W	193	LEU	Peptide
39	W	203	ALA	Peptide
39	W	205	LEU	Peptide
39	W	206	ASP	Peptide
39	W	207	LYS	Peptide
39	W	218	THR	Peptide
39	W	258	ASN	Peptide
39	W	267	GLY	Peptide
39	W	269	ILE	Peptide
39	W	270	MET	Peptide
39	W	308	LYS	Peptide
39	W	309	LYS	Peptide
39	W	310	THR	Peptide
39	W	315	LYS	Peptide
39	W	333	ALA	Peptide
39	W	346	THR	Peptide
39	W	356	PHE	Peptide
39	W	357	THR	Peptide
39	W	360	LEU	Peptide
39	W	362	HIS	Peptide
39	W	363	PRO	Peptide
39	W	364	ASP	Peptide
39	W	381	GLU	Peptide
39	W	384	VAL	Peptide
39	W	396	PRO	Peptide
39	W	403	ASP	Peptide
39	W	404	GLU	Peptide
39	W	405	LYS	Peptide
39	W	409	ILE	Peptide
39	W	412	GLN	Peptide
39	W	413	VAL	Peptide
39	W	414	PRO	Peptide
39	W	417	ASN	Peptide
39	W	419	LEU	Peptide
39	W	445	LYS	Peptide
39	W	446	LEU	Peptide
39	W	448	PRO	Peptide
39	W	456	ARG	Peptide
39	W	462	PHE	Peptide
39	W	464	VAL	Peptide
39	W	476	THR	Peptide

Continued from previous page...

Mol	Chain	Res	Type	Group
39	W	478	VAL	Peptide
39	W	479	ASP	Peptide
39	W	481	ARG	Peptide
39	W	482	GLU	Peptide
39	W	483	TYR	Peptide
39	W	486	GLU	Peptide
39	W	494	ASN	Peptide
39	W	511	GLU	Peptide
39	W	512	GLY	Peptide
39	W	528	GLU	Peptide
39	W	554	ARG	Peptide
39	W	556	ASP	Peptide
39	W	558	ASP	Peptide
39	W	559	GLU	Peptide
39	W	561	ASN	Peptide
4	k	112	ASN	Peptide
25	W	443	THR	Peptide
16	Х	51	TYR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	2419	0	1224	60	0
2	D	7496	0	1961	18	0
3	Ε	1196	0	337	2	0
4	Р	300	0	80	9	0
4	a	318	0	86	0	0
4	k	340	0	87	0	0
5	Q	292	0	93	1	0
5	b	300	0	95	0	0
5	m	296	0	87	0	0
6	R	314	0	86	0	0
6	с	314	0	86	0	0
6	1	316	0	85	0	0
7	S	298	0	89	1	0
7	d	282	0	85	0	0
7	n	272	0	75	0	0

Mol	Chain	Non-H	$\mathbf{H}(\mathbf{model})$	H(added)	Clashes	Symm-Clashes
8	Т	288	0	84	0	0
8	e	318	0	92	0	0
8	h	320	0	88	0	0
9	U	256	0	70	3	0
9	f	260	0	74	0	0
9	i	292	0	80	0	0
10	V	334	0	92	16	0
10	g	380	0	103	0	0
10	i	328	0	89	0	0
11	F	1470	0	745	49	0
12	q	360	0	95	0	0
13	r	300	0	77	0	0
14	s	296	0	77	0	0
15	t	300	0	80	0	0
16	X	280	0	81	0	0
17	у	260	0	75	0	0
18	Z	244	0	71	0	0
19	G	862	0	441	136	0
20	Н	2311	0	1170	139	0
21	0	648	0	167	0	0
22	р	376	0	102	0	0
23	u	496	0	118	0	0
24	V	396	0	91	0	0
25	W	1773	0	477	0	0
26	1	4120	0	1091	171	0
27	2	744	0	189	5	0
28	3	4696	0	1266	59	0
29	4	312	0	87	2	0
30	5	432	0	114	7	0
31	6	356	0	105	5	0
32	7	264	0	70	9	0
33	J	668	0	179	8	0
34	K	1371	0	384	17	0
35	N	2316	0	581	45	0
36	L	904	0	235	1	0
37	M	500	0	128	4	0
38	0	556	0	147	1	0
39	W	1852	0	477	30	0
40	I	2491	0	1262	118	0
41	X	1661	0	440	0	0
42	A	8884	0	2283	148	0
43	C	3272	0	874	50	0

Jerre Jerre Ferrer Ferrer						
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
44	А	36	0	6	0	0
45	С	32	0	12	4	0
46	С	1	0	0	0	0
All	All	63369	0	19125	1003	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (1003) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
19:G:145:U:C2'	19:G:146:C:H5"	1.54	1.37
33:J:536:ASP:CA	33:J:587:GLY:CA	2.11	1.28
43:C:470:PRO:CA	43:C:499:GLY:HA2	1.64	1.27
40:I:63:U:H2'	40:I:64:G:C8	1.69	1.26
33:J:536:ASP:CA	33:J:587:GLY:HA3	1.64	1.25
39:W:341:LYS:CA	39:W:359:LYS:H	1.51	1.24
19:G:135:G:N2	20:H:42:G:C4	2.07	1.21
19:G:153:C:H4'	19:G:154:U:OP1	1.42	1.18
19:G:145:U:C4	19:G:146:C:C5	2.32	1.18
19:G:137:C:O2'	19:G:138:A:H5'	1.45	1.15
19:G:149:G:C8	19:G:150:U:C5	2.34	1.15
33:J:536:ASP:CA	33:J:587:GLY:N	2.10	1.15
19:G:145:U:H2'	19:G:146:C:C5'	1.78	1.14
40:I:51:A:O2'	40:I:56:U:H5"	1.46	1.14
42:A:398:THR:CA	43:C:386:GLY:HA2	1.79	1.11
42:A:1458:GLN:O	42:A:1462:GLY:CA	1.99	1.11
20:H:156:U:H6	20:H:156:U:H5"	1.10	1.09
43:C:665:THR:O	43:C:826:ARG:CA	2.00	1.08
42:A:1833:LEU:O	42:A:1837:ALA:N	1.86	1.07
19:G:145:U:C3'	19:G:146:C:H5"	1.84	1.07
40:I:119:A:N3	4:P:103:GLY:O	1.87	1.06
19:G:145:U:O4	19:G:146:C:C4	2.09	1.06
34:K:250:CYS:N	34:K:253:GLY:O	1.88	1.06
42:A:1458:GLN:O	42:A:1462:GLY:N	1.88	1.05
40:I:126:A:N1	10:V:65:ILE:O	1.91	1.04
11:F:59:G:H1'	40:I:21:U:H4'	1.41	1.03
19:G:155:U:H4'	19:G:156:U:H5'	1.38	1.03
39:W:344:ILE:C	39:W:360:LEU:CA	2.26	1.03
19:G:149:G:C8	19:G:150:U:C4	2.47	1.02
11:F:59:G:H5'	40:I:22:C:H5"	1.36	1.02

	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)
19:G:145:U:H2'	19:G:146:C:H5"	1.03	1.01
19:G:135:G:N2	20:H:42:G:N3	2.06	1.01
33:J:536:ASP:CA	33:J:587:GLY:H	1.72	1.01
26:1:102:ASP:O	26:1:105:ALA:N	1.94	1.00
40:I:119:A:N3	4:P:103:GLY:C	2.14	1.00
19:G:145:U:C3'	19:G:146:C:C5'	2.39	0.99
40:I:60:A:H2'	40:I:61:A:H1'	1.40	0.99
35:N:901:CYS:O	35:N:905:GLU:CA	2.09	0.99
40:I:127:C:H1'	10:V:21:ASN:CA	1.91	0.99
40:I:58:C:O2'	40:I:59:U:C5'	2.10	0.99
40:I:91:A:H2	40:I:110:G:N2	1.61	0.99
19:G:146:C:C2	20:H:33:G:N1	2.32	0.97
19:G:135:G:N3	20:H:42:G:C2	2.33	0.97
42:A:1519:THR:O	42:A:1521:ALA:N	1.96	0.97
26:1:501:LEU:O	26:1:504:ILE:N	1.98	0.97
40:I:58:C:H2'	40:I:59:U:O5'	1.65	0.96
19:G:143:U:H6	19:G:143:U:H5'	1.30	0.96
42:A:1458:GLN:O	42:A:1462:GLY:HA2	1.64	0.96
19:G:146:C:C2	20:H:33:G:C6	2.53	0.96
34:K:251:TRP:O	34:K:275:ASN:CA	2.14	0.95
19:G:145:U:C2'	19:G:146:C:C5'	2.38	0.95
42:A:378:PHE:O	43:C:355:LYS:CA	2.14	0.95
39:W:345:VAL:N	39:W:360:LEU:N	2.15	0.95
43:C:776:GLU:O	43:C:781:ASP:C	2.06	0.94
35:N:901:CYS:O	35:N:905:GLU:N	2.01	0.94
11:F:71:G:H1	40:I:4:U:H3	0.98	0.94
34:K:494:LYS:O	34:K:512:TYR:N	2.01	0.94
20:H:156:U:H5"	20:H:156:U:C6	2.02	0.94
19:G:146:C:O2	20:H:33:G:C6	2.20	0.94
35:N:560:ARG:O	35:N:564:ALA:C	2.06	0.93
11:F:52:U:H5"	11:F:52:U:H6	1.34	0.93
19:G:135:G:C2	20:H:42:G:C2	2.57	0.93
35:N:354:PRO:O	35:N:356:ASP:N	2.02	0.92
40:I:51:A:HO2'	40:I:56:U:H5"	1.29	0.92
1:B:94:U:H1'	1:B:95:G:OP1	1.70	0.92
40:I:63:U:H2'	40:I:64:G:H8	1.13	0.91
1:B:12:U:H3	1:B:65:G:H1	1.12	0.91
42:A:1785:VAL:CA	42:A:1806:ALA:O	2.18	0.91
42:A:1676:ILE:O	42:A:1679:TYR:N	2.03	0.91
35:N:560:ARG:O	35:N:564:ALA:N	2.04	0.91
35:N:375:ILE:O	35:N:377:ILE:N	2.03	0.91

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:I:58:C:C2'	40:I:59:U:O5'	2.15	0.90
19:G:143:U:H5'	19:G:143:U:C6	2.06	0.90
39:W:341:LYS:CA	39:W:359:LYS:N	2.34	0.90
40:I:119:A:N3	4:P:103:GLY:CA	2.35	0.90
42:A:398:THR:CA	43:C:386:GLY:CA	2.49	0.89
19:G:149:G:N7	19:G:150:U:C4	2.40	0.89
26:1:793:LYS:O	26:1:797:GLY:HA3	1.72	0.89
42:A:711:GLN:O	42:A:715:GLU:N	2.05	0.89
19:G:155:U:O2'	19:G:156:U:OP2	1.89	0.89
42:A:379:GLU:O	43:C:355:LYS:N	2.07	0.88
42:A:109:PRO:O	42:A:191:ILE:N	2.06	0.88
42:A:1784:ASN:C	42:A:1806:ALA:O	2.12	0.88
19:G:145:U:H3'	19:G:146:C:C5'	2.04	0.88
42:A:941:LYS:N	42:A:1090:ARG:O	2.07	0.88
35:N:560:ARG:O	35:N:564:ALA:CA	2.23	0.86
40:I:58:C:O2'	40:I:59:U:H5'	1.73	0.86
20:H:154:C:O2	20:H:176:G:N2	2.07	0.86
11:F:59:G:H5'	40:I:22:C:C5'	2.05	0.86
42:A:1520:ASN:O	42:A:1523:ARG:N	2.08	0.86
35:N:160:ILE:CA	42:A:730:GLY:O	2.24	0.86
19:G:153:C:OP1	19:G:154:U:P	2.34	0.86
20:H:40:C:H5"	20:H:40:C:H6	1.39	0.86
40:I:63:U:C2'	40:I:64:G:H8	1.89	0.85
40:I:21:U:O2'	40:I:22:C:H5'	1.75	0.85
42:A:197:PRO:O	42:A:201:ALA:CA	2.24	0.85
20:H:156:U:H6	20:H:156:U:C5'	1.88	0.85
34:K:494:LYS:O	34:K:512:TYR:CA	2.25	0.85
26:1:728:LEU:O	26:1:731:LEU:N	2.10	0.84
42:A:733:THR:C	42:A:735:ILE:H	1.78	0.84
40:I:59:U:O2'	40:I:60:A:O5'	1.95	0.84
42:A:973:CYS:N	42:A:1101:PHE:O	2.11	0.83
19:G:137:C:HO2'	19:G:138:A:H5'	1.37	0.83
19:G:151:C:H1'	19:G:152:C:OP1	1.78	0.83
40:I:58:C:C2'	40:I:59:U:C5'	2.57	0.83
19:G:151:C:H4'	19:G:152:C:H5	1.44	0.83
42:A:1785:VAL:N	42:A:1806:ALA:O	2.11	0.82
40:I:62:U:H2'	40:I:63:U:H6	1.44	0.82
20:H:152:G:N2	20:H:153:A:N7	2.27	0.82
19:G:145:U:C5	19:G:146:C:C5	2.66	0.82
19:G:146:C:O2	20:H:33:G:N1	2.13	0.82
26:1:406:ALA:O	30:5:98:PHE:CA	2.28	0.82

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
20:H:152:G:H5"	20:H:153:A:OP2	1.80	0.82	
19:G:135:G:C2	20:H:42:G:C4	2.68	0.81	
26:1:648:LEU:O	26:1:651:VAL:N	2.13	0.81	
40:I:59:U:HO2'	40:I:60:A:P	2.02	0.81	
43:C:470:PRO:CA	43:C:499:GLY:CA	2.54	0.81	
19:G:145:U:C4	19:G:146:C:C4	2.63	0.81	
40:I:108:C:O2'	40:I:109:G:H5'	1.81	0.81	
29:4:77:ILE:O	29:4:84:ILE:N	2.14	0.81	
35:N:142:PHE:O	35:N:145:LEU:N	2.14	0.81	
31:6:56:GLY:O	31:6:65:GLY:N	2.12	0.81	
42:A:929:GLU:O	42:A:933:ARG:N	2.13	0.81	
19:G:149:G:C2	19:G:150:U:H2'	2.16	0.80	
20:H:165:A:O2'	20:H:166:G:H5'	1.81	0.80	
19:G:149:G:N9	19:G:150:U:C5	2.49	0.80	
43:C:827:LEU:O	43:C:906:ILE:CA	2.30	0.80	
42:A:712:HIS:O	42:A:716:ALA:N	2.13	0.80	
40:I:119:A:C2	4:P:103:GLY:O	2.34	0.80	
2:D:570:THR:CA	42:A:2335:ALA:O	2.29	0.80	
39:W:334:LEU:C	39:W:340:LYS:CA	2.50	0.80	
28:3:523:GLY:HA3	28:3:536:TRP:O	1.83	0.79	
39:W:345:VAL:N	39:W:360:LEU:H	1.81	0.79	
42:A:973:CYS:O	42:A:1101:PHE:N	2.13	0.79	
1:B:17:U:H3	1:B:60:G:H1	0.83	0.79	
11:F:52:U:H5"	11:F:52:U:C6	2.17	0.79	
19:G:147:C:O2	20:H:31:G:N1	2.11	0.79	
20:H:177:A:H5"	20:H:178:A:OP1	1.84	0.78	
26:1:669:GLN:O	26:1:672:ALA:N	2.16	0.78	
11:F:59:G:H4'	40:I:22:C:OP1	1.84	0.78	
19:G:149:G:H2'	19:G:150:U:C6	2.19	0.77	
26:1:428:ALA:O	26:1:432:THR:N	2.17	0.77	
19:G:146:C:H1'	20:H:33:G:N2	1.99	0.77	
20:H:101:U:H5"	20:H:102:U:H5'	1.64	0.77	
19:G:151:C:H4'	19:G:152:C:C5	2.18	0.77	
11:F:59:G:C1'	40:I:21:U:H4'	2.14	0.77	
28:3:839:ALA:O	28:3:843:LEU:N	2.13	0.77	
19:G:146:C:O2	20:H:33:G:C2	2.37	0.77	
19:G:145:U:H3	20:H:33:G:H1	1.33	0.77	
19:G:155:U:H4'	19:G:156:U:C5'	2.13	0.77	
42:A:908:VAL:CA	42:A:1445:TYR:O	2.33	0.77	
19:G:146:C:H1'	20:H:33:G:C2	2.20	0.76	
19:G:135:G:C2	20:H:42:G:N3	2.52	0.76	

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:I:58:C:H2'	40:I:59:U:C5'	2.14	0.76
42:A:1125:ILE:O	42:A:1126:VAL:C	2.24	0.76
11:F:52:U:H6	11:F:52:U:C5'	1.97	0.76
26:1:102:ASP:O	26:1:105:ALA:CA	2.34	0.76
19:G:132:G:H1	20:H:44:U:H3	1.33	0.76
20:H:143:A:H3'	20:H:143:A:N3	2.01	0.76
20:H:153:A:H2'	20:H:154:C:H5'	1.65	0.76
40:I:62:U:H2'	40:I:63:U:C6	2.21	0.76
11:F:102:A:H2'	11:F:103:U:H5'	1.68	0.76
43:C:683:ASN:CA	43:C:795:VAL:O	2.34	0.76
42:A:630:TRP:O	42:A:632:ALA:N	2.18	0.76
19:G:149:G:H3'	19:G:150:U:H5"	1.67	0.76
26:1:1016:LEU:O	26:1:1019:ARG:N	2.19	0.76
39:W:340:LYS:O	39:W:358:LYS:CA	2.34	0.75
42:A:708:THR:O	42:A:711:GLN:N	2.19	0.75
11:F:59:G:C5'	40:I:22:C:H5"	2.15	0.75
2:D:282:SER:O	2:D:286:ALA:N	2.18	0.75
40:I:91:A:H2	40:I:110:G:H22	0.83	0.75
42:A:1702:LEU:O	42:A:1714:ALA:CA	2.34	0.75
19:G:149:G:H2'	19:G:150:U:H6	1.52	0.75
40:I:126:A:H2	10:V:64:ASN:O	1.70	0.75
26:1:1246:MET:O	26:1:1249:TYR:N	2.18	0.74
42:A:1833:LEU:O	42:A:1837:ALA:CA	2.36	0.74
26:1:874:LYS:O	26:1:877:GLY:N	2.20	0.74
1:B:48:A:P	42:A:280:GLU:H	2.11	0.74
1:B:95:G:H5'	1:B:96:A:OP2	1.87	0.74
19:G:153:C:OP1	19:G:154:U:OP1	2.05	0.74
20:H:153:A:C2'	20:H:154:C:H5'	2.17	0.74
42:A:84:ASP:O	42:A:88:TYR:N	2.20	0.74
42:A:317:PRO:O	42:A:321:ASN:O	2.05	0.74
28:3:442:LEU:O	28:3:735:SER:N	2.19	0.74
40:I:119:A:C4	4:P:103:GLY:HA3	2.22	0.74
43:C:143:THR:CA	45:C:1500:GTP:O1B	2.36	0.74
1:B:26:A:C5	42:A:423:ASP:CA	2.71	0.74
1:B:26:A:H5"	1:B:26:A:N3	2.02	0.74
28:3:304:GLN:CA	28:3:309:ASP:O	2.36	0.73
28:3:753:GLY:HA3	28:3:765:LEU:O	1.88	0.73
42:A:80:LYS:C	42:A:82:ARG:H	1.92	0.73
42:A:1500:GLY:O	42:A:1756:SER:CA	2.37	0.73
26:1:1270:ASN:O	26:1:1273:TYR:N	2.21	0.73
42:A:441:VAL:O	42:A:444:ARG:N	2.21	0.73

Interator			Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
20:H:153:A:H2'	20:H:154:C:C5'	2.19	0.73
40:I:126:A:H2	10:V:64:ASN:C	1.93	0.73
19:G:136:U:H1'	19:G:137:C:OP1	1.89	0.72
19:G:146:C:O2	20:H:33:G:C5	2.41	0.72
26:1:994:LEU:O	26:1:997:LEU:N	2.22	0.72
42:A:733:THR:O	42:A:735:ILE:N	2.21	0.72
26:1:660:ALA:O	26:1:663:THR:N	2.22	0.72
28:3:380:GLU:O	28:3:383:ASP:N	2.22	0.72
40:I:127:C:H1'	10:V:21:ASN:C	2.08	0.72
40:I:127:C:O2	10:V:21:ASN:O	2.08	0.72
39:W:344:ILE:C	39:W:360:LEU:N	2.40	0.72
40:I:58:C:C2'	40:I:59:U:H5'	2.20	0.72
26:1:531:LEU:O	26:1:534:GLN:N	2.18	0.72
42:A:186:GLU:O	42:A:565:ARG:O	2.08	0.72
19:G:145:U:C4	19:G:146:C:C6	2.77	0.72
26:1:1055:TRP:O	26:1:1058:ILE:N	2.22	0.71
26:1:535:ILE:O	26:1:538:LEU:N	2.23	0.71
42:A:470:ARG:O	42:A:472:LEU:N	2.23	0.71
26:1:122:HIS:O	26:1:125:THR:N	2.22	0.71
1:B:26:A:N3	1:B:26:A:H3'	2.05	0.71
42:A:471:TYR:O	42:A:474:ARG:N	2.24	0.71
26:1:700:LYS:O	26:1:703:THR:N	2.24	0.71
19:G:153:C:OP1	19:G:154:U:OP2	2.09	0.70
26:1:791:VAL:O	26:1:794:GLN:N	2.23	0.70
11:F:102:A:C2'	11:F:103:U:H5'	2.21	0.70
42:A:1520:ASN:O	42:A:1522:GLN:N	2.24	0.70
19:G:134:U:H3	20:H:42:G:H1	1.37	0.70
20:H:154:C:H2'	20:H:155:C:C6	2.27	0.70
42:A:114:ARG:O	42:A:489:TRP:N	2.25	0.70
43:C:909:GLY:HA3	43:C:930:ALA:H	1.56	0.70
40:I:21:U:H2'	40:I:22:C:H6	1.57	0.70
42:A:939:TRP:O	42:A:1090:ARG:N	2.17	0.70
20:H:153:A:N6	20:H:177:A:C2	2.60	0.69
20:H:168:A:C8	20:H:168:A:H5"	2.27	0.69
43:C:776:GLU:O	43:C:781:ASP:CA	2.40	0.69
11:F:86:U:H3	20:H:12:G:H1	1.39	0.69
20:H:30:A:N3	20:H:30:A:H2'	2.06	0.69
42:A:331:TRP:O	43:C:177:ARG:O	2.10	0.69
42:A:930:ALA:O	42:A:934:ARG:O	2.10	0.69
27:2:479:ASP:O	27:2:482:ALA:N	2.25	0.69
42:A:930:ALA:O	42:A:934:ARG:N	2.25	0.69

	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:159:LEU:O	2:D:162:GLY:N	2.24	0.69
20:H:150:U:H3	20:H:181:G:H1	1.41	0.69
28:3:545:VAL:N	28:3:557:ALA:O	2.25	0.69
35:N:361:VAL:O	35:N:365:ALA:N	2.26	0.69
42:A:61:MET:N	42:A:484:SER:O	2.26	0.69
20:H:40:C:H6	20:H:40:C:C5'	2.05	0.69
20:H:180:G:H2'	20:H:181:G:H8	1.57	0.69
40:I:119:A:C2	4:P:103:GLY:CA	2.76	0.69
35:N:154:GLU:O	42:A:700:GLY:HA3	1.94	0.68
39:W:166:ASN:O	39:W:169:THR:O	2.11	0.68
40:I:63:U:C2'	40:I:64:G:C8	2.61	0.68
42:A:1125:ILE:O	42:A:1128:TYR:N	2.21	0.68
39:W:335:GLY:N	39:W:340:LYS:CA	2.56	0.68
42:A:80:LYS:O	42:A:82:ARG:N	2.25	0.68
11:F:49:G:H1	40:I:63:U:H3	1.41	0.68
28:3:558:LEU:O	28:3:561:GLY:N	2.24	0.68
40:I:127:C:H1'	10:V:21:ASN:O	1.93	0.68
11:F:73:A:N1	40:I:2:G:O6	2.27	0.68
20:H:143:A:H2'	20:H:144:C:H6	1.59	0.68
20:H:152:G:O3'	20:H:153:A:O4'	2.11	0.68
42:A:570:ASP:O	42:A:572:PHE:N	2.26	0.67
19:G:146:C:H6	19:G:146:C:H5'	1.58	0.67
19:G:151:C:C4'	19:G:152:C:H5	2.07	0.67
40:I:24:U:H3	40:I:48:G:H1	1.42	0.67
40:I:21:U:H2'	40:I:22:C:C6	2.29	0.67
40:I:60:A:H2'	40:I:61:A:C1'	2.20	0.67
40:I:55:U:H5'	40:I:56:U:OP2	1.93	0.67
43:C:474:LEU:CA	43:C:498:SER:O	2.42	0.67
20:H:106:G:H21	20:H:107:A:N6	1.92	0.67
27:2:487:LEU:O	27:2:490:HIS:N	2.28	0.67
42:A:1519:THR:O	42:A:1520:ASN:C	2.31	0.67
20:H:151:C:H2'	20:H:152:G:H8	1.60	0.67
20:H:151:C:O2	20:H:152:G:C8	2.48	0.66
42:A:733:THR:C	42:A:735:ILE:N	2.49	0.66
2:D:166:ASP:O	2:D:169:TYR:N	2.26	0.66
40:I:20:A:H2'	40:I:21:U:C6	2.31	0.66
19:G:147:C:OP2	19:G:147:C:H3'	1.96	0.66
40:I:119:A:N3	4:P:103:GLY:HA3	2.09	0.66
20:H:151:C:C2	20:H:152:G:C8	2.83	0.66
20:H:153:A:C3'	20:H:154:C:H5'	2.25	0.66
28:3:753:GLY:CA	28:3:765:LEU:O	2.44	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
42:A:1539:SER:O	42:A:1543:ASN:N	2.17	0.66
34:K:251:TRP:O	34:K:274:THR:O	2.13	0.66
19:G:128:U:H6	19:G:128:U:O5'	1.78	0.65
11:F:59:G:H4'	40:I:22:C:P	2.37	0.65
19:G:127:U:O2'	19:G:128:U:O4'	2.13	0.65
26:1:1243:PRO:O	26:1:1246:MET:N	2.29	0.65
27:2:491:LEU:O	27:2:494:THR:N	2.30	0.65
40:I:6:U:H2'	40:I:7:G:H8	1.62	0.65
42:A:1110:ILE:O	42:A:1114:LEU:N	2.29	0.65
35:N:161:PRO:N	42:A:730:GLY:O	2.29	0.65
1:B:58:U:H2'	1:B:59:G:H8	1.62	0.65
19:G:137:C:H6	19:G:137:C:O5'	1.78	0.65
26:1:886:HIS:O	26:1:889:GLU:N	2.30	0.65
40:I:111:C:H6	40:I:111:C:O5'	1.78	0.65
19:G:151:C:H1'	19:G:152:C:P	2.36	0.65
42:A:543:ALA:O	42:A:547:CYS:N	2.17	0.65
19:G:151:C:C4'	19:G:152:C:C5	2.79	0.65
42:A:441:VAL:O	42:A:442:LYS:C	2.36	0.65
20:H:153:A:H3'	20:H:154:C:H5'	1.79	0.65
28:3:1148:LEU:O	28:3:1152:HIS:N	2.27	0.65
42:A:441:VAL:O	42:A:443:VAL:N	2.30	0.65
1:B:78:U:O2'	1:B:80:U:OP1	2.13	0.64
39:W:344:ILE:O	39:W:360:LEU:CA	2.44	0.64
1:B:97:G:H1	1:B:116:U:H3	1.44	0.64
40:I:117:C:H6	40:I:117:C:O5'	1.80	0.64
26:1:758:ASP:O	26:1:762:ALA:N	2.28	0.64
28:3:868:VAL:O	28:3:877:LEU:N	2.30	0.64
42:A:1676:ILE:O	42:A:1677:GLU:C	2.33	0.64
19:G:146:C:N3	20:H:33:G:C6	2.66	0.64
26:1:1280:LEU:O	26:1:1283:HIS:N	2.22	0.64
19:G:153:C:C4'	19:G:154:U:OP1	2.35	0.64
26:1:749:ALA:O	26:1:752:TYR:N	2.31	0.64
40:I:51:A:O2'	40:I:56:U:C5'	2.35	0.64
26:1:1018:PRO:O	26:1:1021:THR:N	2.30	0.64
42:A:1438:VAL:O	42:A:1442:PHE:N	2.31	0.64
26:1:658:TRP:O	26:1:661:ARG:N	2.30	0.63
32:7:40:TYR:O	32:7:43:TYR:N	2.31	0.63
42:A:397:ASN:C	43:C:386:GLY:O	2.37	0.63
19:G:145:U:O4	19:G:146:C:N4	2.31	0.63
19:G:150:U:OP1	31:6:63:GLY:HA3	1.98	0.63
33:J:658:ARG:O	33:J:662:LYS:N	2.31	0.63

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
34:K:248:THR:O	34:K:254:LEU:CA	2.46	0.63
34:K:338:LEU:O	34:K:350:TRP:N	2.29	0.63
42:A:1784:ASN:O	42:A:1806:ALA:N	2.30	0.63
20:H:152:G:C2	20:H:153:A:C5	2.87	0.63
28:3:931:VAL:O	28:3:936:LYS:N	2.31	0.63
20:H:147:G:H2'	20:H:148:C:H6	1.63	0.63
26:1:1264:VAL:O	26:1:1267:LYS:N	2.32	0.63
19:G:135:G:H5'	19:G:136:U:OP2	1.99	0.63
20:H:114:A:H61	20:H:142:C:H42	1.44	0.63
28:3:325:ILE:O	28:3:375:SER:N	2.30	0.63
40:I:89:U:C2'	40:I:90:G:H5'	2.29	0.63
40:I:126:A:C2	10:V:20:LYS:CA	2.82	0.63
42:A:1784:ASN:O	42:A:1806:ALA:O	2.16	0.63
19:G:137:C:C2'	19:G:138:A:H5'	2.28	0.63
40:I:89:U:O2'	40:I:90:G:H5'	1.99	0.63
42:A:1125:ILE:O	42:A:1127:GLY:N	2.31	0.62
20:H:106:G:H4'	20:H:107:A:O4'	1.99	0.62
1:B:98:G:H2'	1:B:99:C:C6	2.34	0.62
19:G:127:U:OP2	19:G:127:U:H2'	1.99	0.62
19:G:146:C:C2	19:G:147:C:C5	2.87	0.62
26:1:914:PHE:O	26:1:917:VAL:N	2.32	0.62
40:I:91:A:O5'	40:I:91:A:H8	1.82	0.62
26:1:179:GLY:O	26:1:182:LYS:N	2.33	0.62
35:N:410:ALA:O	35:N:413:LEU:N	2.33	0.62
42:A:542:ASN:O	42:A:546:LEU:N	2.30	0.62
20:H:154:C:H2'	20:H:155:C:H6	1.63	0.62
35:N:828:THR:O	35:N:831:VAL:N	2.31	0.62
40:I:126:A:N1	10:V:65:ILE:C	2.53	0.62
42:A:371:LEU:CA	43:C:341:LYS:O	2.47	0.62
20:H:157:G:H8	20:H:157:G:H5"	1.65	0.62
28:3:973:GLY:HA3	28:3:976:LYS:O	2.00	0.62
19:G:146:C:O2'	19:G:147:C:H5'	2.00	0.62
28:3:1191:LYS:O	28:3:1194:SER:N	2.32	0.62
42:A:1519:THR:C	42:A:1521:ALA:N	2.53	0.62
1:B:98:G:H2'	1:B:99:C:H6	1.65	0.62
42:A:471:TYR:O	42:A:472:LEU:C	2.38	0.62
11:F:49:G:H2'	11:F:50:A:H8	1.64	0.61
19:G:150:U:H4'	19:G:151:C:OP2	1.98	0.61
40:I:119:A:C2	4:P:103:GLY:HA2	2.35	0.61
19:G:146:C:C2'	19:G:147:C:H5'	2.30	0.61
20:H:143:A:H2'	20:H:144:C:C6	2.35	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:I:108:C:H2'	40:I:109:G:H8	1.63	0.61
19:G:155:U:H5"	19:G:156:U:H5"	1.83	0.61
26:1:895:GLY:O	26:1:898:TYR:N	2.34	0.61
19:G:146:C:H2'	19:G:147:C:C6	2.36	0.61
20:H:112:G:H2'	20:H:113:G:H8	1.65	0.61
28:3:586:ASP:O	28:3:610:VAL:N	2.32	0.61
40:I:127:C:C1'	10:V:21:ASN:CA	2.74	0.61
26:1:551:LEU:O	26:1:554:LYS:N	2.34	0.61
26:1:862:GLU:O	26:1:865:ARG:N	2.33	0.61
1:B:12:U:O4	1:B:65:G:O6	2.19	0.61
20:H:153:A:N6	20:H:177:A:H2	1.98	0.61
20:H:156:U:C6	20:H:156:U:C5'	2.72	0.61
34:K:252:SER:CA	34:K:274:THR:O	2.49	0.61
20:H:142:C:C2'	20:H:143:A:H5'	2.30	0.61
26:1:953:ASP:O	26:1:956:SER:N	2.34	0.61
19:G:136:U:H1'	19:G:137:C:P	2.41	0.60
28:3:638:GLU:N	28:3:668:GLY:O	2.32	0.60
42:A:768:ASP:O	42:A:772:CYS:N	2.34	0.60
26:1:491:GLU:O	26:1:494:GLU:N	2.32	0.60
39:W:345:VAL:N	39:W:360:LEU:CA	2.62	0.60
26:1:897:LEU:O	26:1:900:PHE:N	2.34	0.60
40:I:33:A:H62	40:I:43:G:H21	1.49	0.60
42:A:1489:LEU:N	42:A:1537:TRP:O	2.33	0.60
28:3:563:LEU:N	28:3:581:LYS:O	2.27	0.60
39:W:344:ILE:C	39:W:360:LEU:H	2.03	0.60
43:C:143:THR:N	45:C:1500:GTP:O1B	2.34	0.60
26:1:784:MET:O	26:1:787:ILE:N	2.34	0.60
26:1:929:LEU:O	26:1:932:ILE:N	2.34	0.60
26:1:1094:LEU:O	26:1:1098:LEU:N	2.32	0.60
40:I:59:U:C2	40:I:60:A:C8	2.90	0.60
19:G:146:C:H2'	19:G:147:C:H6	1.65	0.60
26:1:610:ILE:O	26:1:613:MET:N	2.34	0.60
39:W:341:LYS:C	39:W:359:LYS:H	2.04	0.60
43:C:313:GLN:N	45:C:1500:GTP:O6	2.24	0.60
37:M:12:PRO:O	37:M:82:PHE:CA	2.50	0.59
1:B:94:U:C1'	1:B:95:G:OP1	2.47	0.59
26:1:1182:LEU:O	26:1:1185:ARG:N	2.35	0.59
39:W:338:LYS:O	39:W:339:LYS:C	2.37	0.59
2:D:281:VAL:O	2:D:285:LYS:N	2.30	0.59
28:3:550:ASN:N	28:3:553:GLN:O	2.27	0.59
34:K:181:ILE:O	34:K:185:SER:N	2.31	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
35:N:917:LYS:O	35:N:919:ILE:N	2.36	0.59
42:A:300:ASN:O	43:C:936:LYS:CA	2.50	0.59
42:A:1676:ILE:O	42:A:1678:ARG:N	2.35	0.59
42:A:1779:PHE:N	42:A:1810:PHE:O	2.29	0.59
28:3:664:TYR:CA	28:3:677:THR:O	2.50	0.59
33:J:536:ASP:N	33:J:587:GLY:HA3	2.17	0.59
39:W:344:ILE:CA	39:W:360:LEU:H	2.16	0.59
26:1:1125:PRO:O	26:1:1128:VAL:N	2.35	0.59
35:N:466:ILE:O	35:N:470:ALA:N	2.35	0.59
39:W:427:GLU:N	39:W:441:PHE:H	2.01	0.59
19:G:145:U:H3'	19:G:146:C:H5'	1.82	0.59
26:1:308:SER:O	26:1:311:ALA:N	2.35	0.59
28:3:645:MET:N	28:3:662:PHE:O	2.28	0.59
40:I:62:U:C2	40:I:63:U:C5	2.91	0.59
30:5:67:ILE:O	30:5:70:ALA:N	2.36	0.59
42:A:770:THR:O	42:A:773:LYS:N	2.32	0.58
11:F:59:G:H4'	40:I:21:U:O3'	2.04	0.58
19:G:135:G:N3	20:H:42:G:N2	2.50	0.58
19:G:146:C:O2	20:H:33:G:C4	2.55	0.58
37:M:12:PRO:O	37:M:82:PHE:N	2.36	0.58
1:B:96:A:H3'	1:B:96:A:OP1	2.03	0.58
42:A:80:LYS:C	42:A:82:ARG:N	2.54	0.58
42:A:2010:ILE:O	42:A:2013:GLY:O	2.21	0.58
43:C:496:VAL:O	43:C:547:GLY:N	2.30	0.58
26:1:745:ALA:O	26:1:748:LYS:N	2.36	0.58
26:1:1149:LYS:O	26:1:1152:SER:N	2.36	0.58
26:1:811:LEU:O	26:1:814:PHE:N	2.36	0.58
20:H:154:C:O2'	20:H:155:C:H5'	2.04	0.58
1:B:96:A:H3'	1:B:96:A:P	2.43	0.58
19:G:145:U:N3	19:G:146:C:C6	2.71	0.58
40:I:59:U:C2	40:I:60:A:N7	2.71	0.58
42:A:1506:ALA:O	42:A:1510:GLU:N	2.34	0.58
42:A:689:VAL:O	42:A:693:ILE:N	2.32	0.58
35:N:361:VAL:O	35:N:365:ALA:CA	2.52	0.58
1:B:95:G:H3'	1:B:95:G:N3	2.19	0.58
19:G:149:G:N9	19:G:150:U:C6	2.72	0.58
19:G:151:C:C5'	19:G:152:C:H5	2.17	0.58
28:3:1204:VAL:O	28:3:1207:LYS:N	2.37	0.58
40:I:108:C:C2'	40:I:109:G:H5'	2.34	0.58
26:1:424:ILE:O	26:1:428:ALA:N	2.36	0.57
32:7:48:ASP:O	32:7:51:ASN:N	2.37	0.57

	louo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
19:G:125:C:O2'	19:G:126:C:P	2.62	0.57
40:I:113:C:H6	40:I:113:C:O5'	1.88	0.57
19:G:149:G:C4	19:G:150:U:C6	2.93	0.57
42:A:122:ILE:N	42:A:481:PHE:O	2.25	0.57
19:G:150:U:O2	19:G:150:U:O2'	2.22	0.57
20:H:152:G:N2	20:H:153:A:C5	2.73	0.57
39:W:335:GLY:HA2	39:W:340:LYS:O	2.05	0.57
42:A:379:GLU:C	43:C:355:LYS:CA	2.73	0.57
26:1:892:LEU:O	26:1:895:GLY:N	2.37	0.57
35:N:139:GLN:O	35:N:143:SER:N	2.35	0.57
20:H:165:A:C6	20:H:166:G:O6	2.57	0.57
40:I:110:G:O5'	40:I:110:G:H8	1.86	0.57
11:F:50:A:H2'	11:F:51:U:H6	1.69	0.57
26:1:578:ILE:O	26:1:581:LEU:N	2.37	0.57
26:1:937:LEU:O	26:1:940:LEU:N	2.38	0.57
40:I:111:C:H2'	40:I:112:A:H8	1.69	0.56
1:B:110:C:H2'	1:B:111:A:H8	1.70	0.56
19:G:146:C:N4	19:G:147:C:H41	2.03	0.56
28:3:287:PHE:CA	28:3:304:GLN:O	2.53	0.56
42:A:630:TRP:O	42:A:631:ALA:C	2.43	0.56
43:C:682:LYS:O	43:C:797:ALA:N	2.38	0.56
26:1:849:ILE:O	26:1:852:ARG:N	2.38	0.56
28:3:1160:HIS:O	28:3:1163:PHE:N	2.37	0.56
39:W:341:LYS:CA	39:W:358:LYS:CA	2.83	0.56
40:I:20:A:H2'	40:I:21:U:C5	2.40	0.56
42:A:1012:LYS:O	42:A:1013:ASN:O	2.23	0.56
11:F:59:G:C4'	40:I:21:U:O3'	2.53	0.56
19:G:149:G:C2'	19:G:150:U:C6	2.89	0.56
28:3:15:SER:N	28:3:33:SER:O	2.35	0.56
20:H:141:C:H2'	20:H:142:C:H6	1.71	0.56
42:A:940:ILE:CA	42:A:1090:ARG:O	2.54	0.56
19:G:136:U:C1'	19:G:137:C:P	2.94	0.56
20:H:141:C:C2	20:H:142:C:C5	2.93	0.56
42:A:930:ALA:O	42:A:934:ARG:CA	2.54	0.56
1:B:69:A:O2'	1:B:70:A:N3	2.39	0.56
20:H:149:A:H2'	20:H:150:U:H6	1.70	0.56
20:H:152:G:N2	20:H:153:A:C8	2.73	0.56
26:1:716:ALA:O	26:1:719:TYR:N	2.39	0.56
40:I:108:C:H2'	40:I:109:G:C8	2.41	0.56
42:A:371:LEU:CA	43:C:341:LYS:C	2.74	0.56
19:G:151:C:C1'	19:G:152:C:P	2.94	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
20:H:150:U:H2'	20:H:151:C:H6	1.71	0.56
42:A:331:TRP:O	43:C:177:ARG:CA	2.54	0.56
42:A:1787:ARG:O	42:A:1803:ILE:O	2.24	0.56
1:B:61:A:H2'	1:B:62:G:H8	1.69	0.55
26:1:968:GLU:O	26:1:971:MET:N	2.39	0.55
11:F:50:A:C4	11:F:51:U:C5	2.94	0.55
19:G:149:G:C3'	19:G:150:U:H5"	2.35	0.55
20:H:147:G:C4	20:H:148:C:C5	2.94	0.55
28:3:523:GLY:CA	28:3:536:TRP:O	2.51	0.55
20:H:150:U:C2	20:H:151:C:C5	2.94	0.55
26:1:874:LYS:O	26:1:877:GLY:CA	2.54	0.55
26:1:1124:SER:O	26:1:1127:THR:N	2.34	0.55
28:3:931:VAL:O	28:3:935:GLU:N	2.39	0.55
19:G:135:G:N2	20:H:42:G:N9	2.53	0.55
20:H:181:G:H2'	20:H:182:U:H6	1.71	0.55
40:I:125:G:H1'	10:V:63:ASN:C	2.27	0.55
26:1:173:ALA:C	26:1:176:ALA:H	2.09	0.55
28:3:303:ALA:O	28:3:310:ILE:CA	2.55	0.55
30:5:98:PHE:O	30:5:100:LYS:N	2.39	0.55
28:3:1194:SER:O	28:3:1199:ARG:N	2.36	0.55
2:D:128:PRO:O	2:D:129:ARG:C	2.45	0.55
2:D:146:GLU:O	2:D:149:ARG:N	2.40	0.55
19:G:137:C:O2'	19:G:138:A:C5'	2.37	0.55
20:H:183:G:C4	20:H:184:C:C5	2.94	0.55
20:H:183:G:H2'	20:H:184:C:H6	1.71	0.55
30:5:109:GLN:O	30:5:112:LEU:N	2.39	0.55
40:I:21:U:C2'	40:I:22:C:H5'	2.37	0.55
40:I:59:U:H1'	40:I:60:A:H5'	1.89	0.55
11:F:51:U:H2'	11:F:51:U:O2	2.06	0.55
20:H:181:G:C4	20:H:182:U:C5	2.95	0.55
19:G:151:C:O2'	19:G:151:C:O2	2.24	0.54
42:A:359:ILE:O	42:A:360:SER:C	2.44	0.54
2:D:283:GLN:O	2:D:287:ASP:N	2.33	0.54
20:H:149:A:C4	20:H:150:U:C5	2.95	0.54
26:1:517:ARG:O	26:1:520:THR:N	2.41	0.54
26:1:557:ASP:O	26:1:560:LEU:N	2.40	0.54
40:I:55:U:H3'	40:I:56:U:C6	2.42	0.54
40:I:55:U:H2'	40:I:55:U:O2	2.07	0.54
40:I:124:U:H1'	9:U:37:HIS:O	2.06	0.54
43:C:664:GLU:O	43:C:785:ARG:N	2.27	0.54
1:B:17:U:O2	1:B:60:G:N2	2.28	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:108:G:H3'	1:B:109:G:H8	1.73	0.54
2:D:1048:VAL:O	2:D:1050:GLU:N	2.40	0.54
11:F:52:U:C6	11:F:52:U:C5'	2.85	0.54
19:G:146:C:C2	20:H:33:G:C2	2.95	0.54
20:H:153:A:C3'	20:H:154:C:C5'	2.86	0.54
35:N:142:PHE:O	35:N:143:SER:C	2.45	0.54
43:C:776:GLU:O	43:C:782:GLU:N	2.41	0.54
1:B:26:A:H2	1:B:27:U:C5	2.26	0.54
19:G:146:C:N3	20:H:33:G:O6	2.40	0.54
1:B:110:C:H2'	1:B:111:A:C8	2.41	0.54
19:G:146:C:C1'	20:H:33:G:N2	2.68	0.54
19:G:151:C:O2'	19:G:152:C:OP1	2.24	0.54
1:B:99:C:H2'	1:B:100:C:C6	2.43	0.54
20:H:147:G:H2'	20:H:148:C:C6	2.43	0.54
26:1:1026:ASN:O	26:1:1028:HIS:N	2.41	0.54
26:1:1205:GLU:O	26:1:1208:LEU:N	2.41	0.54
31:6:7:ASP:O	31:6:91:LEU:N	2.39	0.54
19:G:151:C:C5'	19:G:152:C:C5	2.91	0.54
26:1:641:ILE:O	26:1:644:LEU:N	2.40	0.54
37:M:9:LYS:O	37:M:11:TYR:N	2.40	0.54
26:1:981:TYR:O	26:1:984:GLU:N	2.20	0.53
28:3:785:PRO:CA	28:3:800:ILE:O	2.56	0.53
11:F:47:A:H2'	11:F:48:A:H8	1.72	0.53
26:1:1132:LEU:O	26:1:1135:GLU:N	2.41	0.53
42:A:1817:LEU:N	42:A:1917:PHE:O	2.40	0.53
19:G:153:C:H2'	19:G:153:C:O2	2.08	0.53
20:H:153:A:H3'	20:H:154:C:C5'	2.38	0.53
34:K:222:ASN:O	34:K:520:MET:N	2.39	0.53
35:N:159:SER:O	42:A:730:GLY:HA3	2.08	0.53
35:N:142:PHE:O	35:N:144:ASP:N	2.41	0.53
40:I:58:C:H2'	40:I:59:U:H5'	1.85	0.53
40:I:61:A:H2'	40:I:62:U:C6	2.44	0.53
26:1:841:ALA:O	26:1:843:LYS:N	2.42	0.53
43:C:457:VAL:CA	43:C:462:GLY:HA3	2.39	0.53
28:3:1195:GLU:O	28:3:1198:ASP:N	2.41	0.53
35:N:290:ASP:H	42:A:872:ASP:CA	2.21	0.53
40:I:55:U:H3'	40:I:56:U:C5	2.44	0.53
40:I:126:A:C2	10:V:64:ASN:C	2.79	0.53
42:A:570:ASP:C	42:A:572:PHE:N	2.61	0.53
11:F:73:A:C2	40:I:2:G:N1	2.75	0.53
19:G:137:C:C2'	19:G:138:A:C5'	2.87	0.52

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
26:1:963:LYS:O	26:1:966:GLN:N	2.30	0.52
35:N:117:LYS:C	35:N:119:ARG:H	2.12	0.52
2:D:298:ASP:O	2:D:301:GLU:N	2.41	0.52
26:1:244:THR:O	26:1:247:ALA:N	2.42	0.52
33:J:534:LYS:O	33:J:567:LEU:O	2.26	0.52
34:K:206:THR:O	34:K:210:GLN:N	2.37	0.52
42:A:823:SER:O	42:A:824:PRO:C	2.47	0.52
26:1:929:LEU:O	26:1:930:PRO:C	2.45	0.52
26:1:1280:LEU:O	26:1:1282:ALA:N	2.42	0.52
35:N:302:ARG:O	35:N:305:ASN:O	2.28	0.52
26:1:747:LEU:O	26:1:748:LYS:C	2.48	0.52
27:2:596:GLU:O	27:2:598:GLU:N	2.43	0.52
40:I:21:U:HO2'	40:I:22:C:H5'	1.73	0.52
26:1:663:THR:O	26:1:666:LYS:N	2.42	0.52
35:N:425:ARG:O	35:N:429:CYS:N	2.38	0.52
42:A:347:LEU:O	42:A:348:PRO:C	2.47	0.52
28:3:430:GLY:O	28:3:433:SER:N	2.31	0.52
28:3:546:LYS:O	28:3:556:ILE:CA	2.58	0.52
40:I:118:A:H8	40:I:118:A:OP2	1.92	0.52
42:A:1943:LEU:O	42:A:1947:ASN:CA	2.58	0.52
1:B:19:A:H62	42:A:467:GLN:CA	2.22	0.52
1:B:48:A:O5'	42:A:280:GLU:N	2.42	0.52
28:3:589:CYS:O	28:3:608:GLY:N	2.30	0.52
42:A:708:THR:O	42:A:709:ILE:C	2.48	0.52
42:A:1439:ARG:O	42:A:1443:LYS:N	2.43	0.52
19:G:146:C:H2'	19:G:147:C:H5'	1.91	0.51
26:1:699:GLN:O	26:1:700:LYS:C	2.48	0.51
20:H:30:A:N3	20:H:30:A:C2'	2.73	0.51
20:H:107:A:C6	20:H:108:G:C5	2.99	0.51
26:1:771:LEU:O	26:1:774:ILE:N	2.44	0.51
26:1:793:LYS:O	26:1:797:GLY:CA	2.54	0.51
26:1:1110:VAL:O	26:1:1113:THR:N	2.43	0.51
32:7:37:ARG:O	32:7:40:TYR:N	2.44	0.51
34:K:340:THR:O	34:K:348:ARG:N	2.40	0.51
35:N:393:LEU:O	35:N:397:LEU:N	2.39	0.51
42:A:617:ASN:CA	42:A:621:VAL:O	2.59	0.51
11:F:52:U:O4	11:F:53:A:N6	2.43	0.51
19:G:152:C:H6	19:G:152:C:H3'	1.76	0.51
28:3:673:VAL:CA	28:3:691:THR:H	2.24	0.51
35:N:375:ILE:C	35:N:377:ILE:N	2.63	0.51
11:F:46:G:H2'	11:F:47:A:C8	2.45	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
28:3:699:VAL:CA	28:3:715:MET:O	2.59	0.51
28:3:973:GLY:HA3	28:3:976:LYS:C	2.31	0.51
39:W:344:ILE:CA	39:W:360:LEU:CA	2.89	0.51
26:1:423:PRO:O	26:1:427:PRO:N	2.43	0.51
1:B:95:G:N3	1:B:95:G:C2'	2.73	0.51
26:1:1025:LYS:O	26:1:1027:ARG:N	2.42	0.51
42:A:838:LEU:O	42:A:841:LEU:N	2.44	0.51
19:G:156:U:H2'	19:G:156:U:O2	2.08	0.51
28:3:488:GLY:C	28:3:490:THR:H	2.14	0.51
30:5:46:ARG:N	30:5:63:VAL:O	2.44	0.51
42:A:1520:ASN:C	42:A:1522:GLN:N	2.63	0.51
19:G:126:C:H2'	19:G:126:C:O2	2.09	0.51
40:I:111:C:H2'	40:I:112:A:C8	2.46	0.51
42:A:398:THR:CA	43:C:386:GLY:HA3	2.38	0.51
26:1:1035:CYS:O	26:1:1038:LEU:N	2.44	0.51
2:D:114:GLU:O	2:D:117:LEU:N	2.44	0.51
20:H:111:G:O3'	20:H:112:G:O4'	2.29	0.51
26:1:1080:THR:O	26:1:1083:TYR:N	2.44	0.51
26:1:1188:ALA:O	26:1:1191:VAL:N	2.44	0.51
26:1:1207:SER:O	26:1:1210:HIS:N	2.43	0.51
28:3:147:ASP:N	28:3:151:ARG:O	2.42	0.51
28:3:318:ASP:N	28:3:321:MET:O	2.27	0.51
26:1:804:ASN:O	26:1:807:LYS:N	2.44	0.50
40:I:143:U:H2'	40:I:144:G:H5"	1.92	0.50
26:1:1129:LEU:O	26:1:1132:LEU:N	2.44	0.50
26:1:629:ALA:O	26:1:632:PHE:N	2.45	0.50
42:A:1488:THR:C	42:A:1537:TRP:O	2.49	0.50
19:G:143:U:C6	19:G:143:U:C5'	2.89	0.50
9:U:18:ARG:N	9:U:81:THR:O	2.40	0.50
1:B:26:A:N3	1:B:26:A:C3'	2.73	0.50
19:G:149:G:H21	19:G:150:U:H5'	1.77	0.50
20:H:143:A:N3	20:H:143:A:C3'	2.73	0.50
40:I:20:A:O2'	40:I:21:U:H5'	2.12	0.50
42:A:332:TYR:CA	43:C:177:ARG:O	2.60	0.50
19:G:146:C:C4	19:G:147:C:N4	2.73	0.50
40:I:58:C:O2'	40:I:59:U:H5"	2.09	0.50
42:A:972:GLU:CA	42:A:1101:PHE:O	2.60	0.50
43:C:452:THR:O	43:C:577:PHE:CA	2.60	0.50
26:1:1268:ILE:O	26:1:1271:SER:N	2.44	0.50
28:3:1195:GLU:C	28:3:1198:ASP:H	2.14	0.50
42:A:823:SER:O	42:A:824:PRO:O	2.30	0.50

	ous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
35:N:360:ALA:O	35:N:364:GLN:N	2.38	0.50
1:B:100:C:H2'	1:B:101:U:C6	2.46	0.50
34:K:250:CYS:O	34:K:251:TRP:C	2.50	0.50
1:B:58:U:H2'	1:B:59:G:C8	2.46	0.49
39:W:564:GLY:O	39:W:565:ALA:O	2.29	0.49
26:1:528:ALA:O	26:1:531:LEU:N	2.44	0.49
39:W:349:PHE:N	39:W:364:ASP:H	2.10	0.49
42:A:401:GLY:HA3	43:C:385:VAL:O	2.12	0.49
42:A:929:GLU:O	42:A:933:ARG:CA	2.59	0.49
11:F:102:A:O2'	11:F:103:U:C5'	2.60	0.49
26:1:587:TYR:O	26:1:590:ARG:N	2.45	0.49
11:F:47:A:H2'	11:F:48:A:C8	2.47	0.49
26:1:237:GLY:O	26:1:239:ALA:N	2.45	0.49
33:J:446:LYS:CA	40:I:23:G:OP1	2.61	0.49
39:W:334:LEU:CA	39:W:340:LYS:CA	2.90	0.49
43:C:470:PRO:C	43:C:499:GLY:HA2	2.29	0.49
1:B:48:A:O5'	42:A:280:GLU:CA	2.60	0.49
20:H:106:G:N2	20:H:107:A:C6	2.72	0.49
20:H:46:U:H5"	20:H:47:U:H2'	1.93	0.49
26:1:1227:ILE:O	26:1:1230:VAL:N	2.46	0.49
28:3:596:PRO:O	28:3:598:GLY:N	2.45	0.49
42:A:597:LYS:C	42:A:599:MET:H	2.16	0.49
1:B:48:A:H2'	1:B:49:A:H8	1.76	0.49
19:G:149:G:H3'	19:G:149:G:N3	2.28	0.49
35:N:158:LEU:O	35:N:160:ILE:N	2.44	0.49
42:A:596:TYR:O	42:A:597:LYS:C	2.50	0.49
11:F:102:A:O2'	11:F:103:U:H5"	2.12	0.49
19:G:146:C:C2	19:G:147:C:H5	2.30	0.49
20:H:40:C:C5'	20:H:40:C:C6	2.92	0.49
26:1:553:VAL:O	26:1:556:ILE:N	2.46	0.49
39:W:341:LYS:O	39:W:359:LYS:CA	2.61	0.49
19:G:151:C:C1'	19:G:152:C:OP1	2.55	0.48
20:H:107:A:C2	20:H:108:G:C4	3.01	0.48
42:A:708:THR:O	42:A:710:LEU:N	2.46	0.48
26:1:625:ARG:O	26:1:628:THR:N	2.46	0.48
26:1:631:ALA:O	26:1:634:VAL:N	2.47	0.48
43:C:133:THR:O	43:C:225:VAL:CA	2.62	0.48
19:G:135:G:H1	20:H:41:U:H3	1.60	0.48
42:A:1197:LEU:O	42:A:1226:ALA:CA	2.62	0.48
19:G:135:G:C2	20:H:42:G:C5	3.02	0.48
26:1:177:LYS:O	26:1:180:GLU:N	2.46	0.48

	louis page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
28:3:672:GLY:O	28:3:695:GLY:N	2.46	0.48
35:N:160:ILE:CA	42:A:730:GLY:C	2.82	0.48
42:A:947:PRO:O	42:A:951:LEU:N	2.41	0.48
1:B:72:U:H2'	1:B:73:C:H6	1.78	0.48
27:2:491:LEU:O	27:2:493:ALA:N	2.46	0.48
26:1:939:ARG:O	26:1:940:LEU:C	2.51	0.48
11:F:73:A:H2	40:I:2:G:H1	1.56	0.48
19:G:152:C:O2'	19:G:153:C:O5'	2.30	0.48
26:1:408:PHE:O	26:1:409:PRO:C	2.50	0.48
43:C:263:LEU:O	43:C:268:LYS:N	2.47	0.48
1:B:17:U:O4	1:B:60:G:O6	2.31	0.47
1:B:25:C:H42	42:A:420:ARG:H	1.62	0.47
1:B:95:G:N3	1:B:95:G:H2'	2.28	0.47
11:F:49:G:H2'	11:F:50:A:C8	2.48	0.47
19:G:125:C:HO2'	19:G:126:C:P	2.36	0.47
20:H:151:C:C2	20:H:152:G:N7	2.82	0.47
1:B:23:C:H3'	1:B:24:G:H4'	1.96	0.47
19:G:149:G:C2'	19:G:150:U:H6	2.23	0.47
26:1:944:SER:O	26:1:946:LYS:N	2.38	0.47
26:1:978:LEU:O	26:1:979:TYR:C	2.51	0.47
28:3:923:GLY:HA3	28:3:947:GLU:O	2.14	0.47
40:I:110:G:H2'	40:I:111:C:C6	2.49	0.47
43:C:143:THR:H	45:C:1500:GTP:PB	2.37	0.47
43:C:366:GLN:O	43:C:367:ARG:C	2.51	0.47
26:1:102:ASP:O	26:1:106:GLU:N	2.47	0.47
11:F:73:A:N1	40:I:2:G:C6	2.82	0.47
19:G:135:G:O6	20:H:41:U:O4	2.32	0.47
28:3:558:LEU:O	28:3:561:GLY:CA	2.63	0.47
40:I:109:G:H2'	40:I:110:G:C8	2.49	0.47
20:H:153:A:C2'	20:H:154:C:C5'	2.86	0.47
26:1:226:HIS:O	26:1:229:SER:N	2.47	0.47
26:1:660:ALA:O	26:1:661:ARG:C	2.53	0.47
39:W:351:GLY:HA2	39:W:367:ALA:C	2.35	0.47
26:1:103:PRO:C	26:1:106:GLU:H	2.18	0.47
28:3:42:ARG:N	28:3:51:HIS:O	2.32	0.47
35:N:433:SER:O	35:N:437:TRP:N	2.47	0.47
43:C:452:THR:O	43:C:578:ARG:N	2.46	0.47
28:3:44:ASP:O	28:3:48:GLY:HA2	2.15	0.47
34:K:333:PRO:O	34:K:334:SER:O	2.33	0.47
35:N:410:ALA:O	35:N:413:LEU:CA	2.62	0.47
20:H:153:A:C8	20:H:154:C:H5'	2.50	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
20:H:183:G:H2'	20:H:184:C:C6	2.50	0.47
35:N:15:LEU:O	35:N:17:TYR:N	2.48	0.47
42:A:230:PHE:N	42:A:414:ARG:O	2.45	0.47
2:D:355:GLU:O	2:D:359:PHE:N	2.40	0.47
26:1:210:ALA:O	26:1:213:LYS:N	2.48	0.47
26:1:693:GLY:O	26:1:695:VAL:N	2.48	0.47
32:7:36:HIS:O	32:7:37:ARG:C	2.53	0.47
34:K:307:LEU:O	34:K:316:VAL:N	2.48	0.47
1:B:111:A:H2'	1:B:112:A:C8	2.49	0.46
11:F:50:A:H2'	11:F:51:U:C6	2.50	0.46
19:G:122:U:H4'	19:G:123:U:OP1	2.14	0.46
26:1:667:ILE:O	26:1:668:VAL:C	2.53	0.46
11:F:66:C:H2'	11:F:67:G:C8	2.50	0.46
32:7:42:SER:O	32:7:45:GLY:N	2.48	0.46
40:I:61:A:H2'	40:I:62:U:H6	1.80	0.46
20:H:107:A:C6	20:H:108:G:C6	3.04	0.46
26:1:705:SER:O	26:1:706:ALA:C	2.54	0.46
19:G:153:C:H4'	19:G:153:C:OP1	2.14	0.46
35:N:557:GLU:O	35:N:561:ALA:N	2.48	0.46
40:I:51:A:C2	40:I:55:U:O2'	2.64	0.46
40:I:126:A:C2	10:V:64:ASN:O	2.60	0.46
26:1:974:LEU:O	26:1:975:GLY:C	2.54	0.46
37:M:59:ASP:O	37:M:60:ALA:C	2.53	0.46
40:I:11:A:H2'	40:I:12:G:C8	2.50	0.46
26:1:1280:LEU:O	26:1:1281:ILE:C	2.51	0.46
35:N:391:ARG:O	35:N:395:LYS:N	2.37	0.46
20:H:141:C:H2'	20:H:142:C:C6	2.50	0.46
20:H:150:U:H2'	20:H:151:C:C6	2.50	0.46
20:H:168:A:H3'	20:H:169:C:H6	1.80	0.46
31:6:46:CYS:O	31:6:50:ASN:N	2.43	0.46
43:C:827:LEU:C	43:C:907:VAL:H	2.18	0.46
20:H:149:A:H2'	20:H:150:U:C6	2.50	0.46
26:1:257:THR:O	26:1:259:SER:N	2.49	0.46
32:7:48:ASP:O	32:7:49:LEU:C	2.54	0.46
1:B:26:A:H2	1:B:27:U:C6	2.34	0.46
1:B:99:C:H2'	1:B:100:C:H6	1.79	0.46
20:H:3:C:H2'	20:H:4:G:C8	2.51	0.46
20:H:181:G:H2'	20:H:182:U:C6	2.50	0.46
26:1:708:ALA:O	26:1:711:ALA:N	2.49	0.46
35:N:429:CYS:O	35:N:433:SER:N	2.38	0.46
42:A:1520:ASN:C	42:A:1522:GLN:H	2.19	0.46

	louo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
20:H:180:G:H2'	20:H:181:G:C8	2.44	0.45
28:3:890:SER:O	28:3:908:GLY:N	2.41	0.45
20:H:59:A:H2'	20:H:60:U:O4'	2.17	0.45
42:A:570:ASP:O	42:A:571:ALA:C	2.54	0.45
2:D:159:LEU:C	2:D:161:LEU:N	2.68	0.45
20:H:113:G:H2'	20:H:114:A:H8	1.82	0.45
28:3:1141:PHE:O	28:3:1144:VAL:N	2.49	0.45
32:7:62:ALA:O	32:7:65:ARG:N	2.50	0.45
20:H:112:G:H2'	20:H:113:G:C8	2.50	0.45
26:1:687:VAL:O	26:1:690:ILE:N	2.50	0.45
35:N:554:ASN:O	35:N:558:CYS:N	2.43	0.45
20:H:148:C:H2'	20:H:149:A:H8	1.82	0.45
40:I:125:G:H1'	10:V:63:ASN:O	2.17	0.45
42:A:770:THR:O	42:A:771:VAL:C	2.51	0.45
2:D:1349:GLY:HA2	2:D:1491:SER:O	2.16	0.45
9:U:80:MET:O	10:V:59:SER:N	2.44	0.45
11:F:52:U:C5	11:F:52:U:OP2	2.70	0.45
19:G:149:G:N3	19:G:150:U:H5"	2.31	0.45
28:3:672:GLY:O	28:3:691:THR:N	2.49	0.45
40:I:115:G:H2'	40:I:116:G:C8	2.52	0.45
20:H:142:C:H2'	20:H:143:A:H5'	1.98	0.45
26:1:862:GLU:O	26:1:863:GLN:C	2.55	0.45
1:B:74:U:H2'	1:B:75:G:C8	2.52	0.45
28:3:215:LEU:O	28:3:218:ASN:N	2.50	0.45
43:C:133:THR:O	43:C:226:VAL:N	2.46	0.45
26:1:1119:VAL:O	26:1:1122:THR:N	2.49	0.45
28:3:663:LEU:O	28:3:678:VAL:CA	2.65	0.45
26:1:849:ILE:O	26:1:850:ILE:C	2.54	0.44
26:1:1243:PRO:O	26:1:1244:CYS:C	2.55	0.44
40:I:118:A:OP2	40:I:118:A:C8	2.71	0.44
42:A:350:PHE:O	43:C:268:LYS:O	2.35	0.44
1:B:98:G:OP2	1:B:98:G:C8	2.70	0.44
19:G:127:U:O2'	19:G:127:U:O2	2.31	0.44
19:G:147:C:N3	20:H:31:G:O6	2.50	0.44
19:G:150:U:O2'	19:G:151:C:C5	2.71	0.44
35:N:289:ASN:N	42:A:871:TYR:C	2.71	0.44
42:A:989:ASP:O	42:A:993:LEU:N	2.41	0.44
11:F:102:A:C2'	11:F:103:U:C5'	2.93	0.44
20:H:114:A:H2'	20:H:115:G:H8	1.81	0.44
20:H:152:G:O2'	20:H:153:A:H1'	2.16	0.44
35:N:149:LEU:O	35:N:151:GLU:N	2.51	0.44

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
26:1:606:LEU:O	26:1:609:MET:N	2.51	0.44	
40:I:91:A:H2'	40:I:92:C:C6	2.53	0.44	
4:P:109:VAL:N	5:Q:63:LEU:O	2.42	0.44	
34:K:374:HIS:O	34:K:377:GLY:N	2.46	0.44	
42:A:1520:ASN:O	42:A:1521:ALA:C	2.56	0.44	
1:B:10:U:H2'	1:B:11:U:C6	2.52	0.44	
19:G:148:U:O3'	19:G:149:G:O4'	2.35	0.44	
20:H:178:A:C5'	20:H:179:C:OP2	2.66	0.44	
20:H:182:U:H2'	20:H:183:G:H8	1.81	0.44	
26:1:693:GLY:O	26:1:694:LEU:C	2.55	0.44	
26:1:708:ALA:O	26:1:709:ILE:C	2.54	0.44	
26:1:892:LEU:O	26:1:893:ILE:C	2.54	0.44	
42:A:570:ASP:O	42:A:574:LEU:N	2.38	0.44	
2:D:121:GLN:O	2:D:125:GLY:N	2.40	0.44	
11:F:52:U:C6	11:F:52:U:OP2	2.71	0.44	
11:F:90:G:H2'	11:F:91:A:H8	1.82	0.44	
11:F:91:A:H2'	11:F:92:A:C8	2.53	0.44	
19:G:149:G:C5	19:G:150:U:C4	3.05	0.44	
28:3:676:ARG:O	28:3:686:LEU:CA	2.65	0.44	
28:3:930:LEU:C	28:3:934:GLY:HA2	2.38	0.44	
39:W:334:LEU:O	39:W:340:LYS:O	2.35	0.44	
40:I:59:U:O2	40:I:60:A:C8	2.70	0.44	
7:S:22:ASN:N	7:S:66:SER:O	2.49	0.44	
1:B:61:A:H2'	1:B:62:G:C8	2.50	0.44	
19:G:126:C:C2	19:G:126:C:OP2	2.70	0.44	
20:H:142:C:O2'	20:H:143:A:H5'	2.18	0.44	
20:H:143:A:OP2	20:H:143:A:C2	2.71	0.44	
26:1:663:THR:O	26:1:664:GLY:C	2.56	0.44	
26:1:953:ASP:O	26:1:954:LEU:C	2.56	0.44	
43:C:257:ILE:O	43:C:310:SER:O	2.36	0.44	
35:N:560:ARG:C	35:N:564:ALA:H	2.21	0.44	
26:1:889:GLU:O	26:1:892:LEU:N	2.51	0.43	
26:1:1078:VAL:O	26:1:1081:PHE:N	2.50	0.43	
28:3:1148:LEU:O	28:3:1151:GLU:N	2.51	0.43	
40:I:59:U:HO2'	40:I:60:A:C5'	2.19	0.43	
26:1:665:ILE:O	26:1:666:LYS:C	2.55	0.43	
40:I:21:U:C5	40:I:21:U:OP2	2.70	0.43	
42:A:770:THR:O	42:A:772:CYS:N	2.51	0.43	
26:1:865:ARG:O	26:1:866:LYS:C	2.56	0.43	
26:1:955:ILE:O	26:1:956:SER:C	2.57	0.43	
26:1:1264:VAL:O	26:1:1265:TYR:C	2.56	0.43	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:95:G:N3	1:B:95:G:C3'	2.81	0.43
26:1:629:ALA:O	26:1:630:ARG:C	2.56	0.43
26:1:1230:VAL:O	26:1:1233:ALA:N	2.52	0.43
40:I:110:G:O5'	40:I:110:G:C8	2.70	0.43
1:B:31:U:H2'	1:B:32:C:C6	2.54	0.43
1:B:72:U:H2'	1:B:73:C:C6	2.53	0.43
20:H:98:G:H5'	20:H:104:U:OP2	2.19	0.43
26:1:994:LEU:O	26:1:995:GLY:C	2.56	0.43
20:H:154:C:O2'	20:H:155:C:C5'	2.66	0.43
26:1:803:ALA:O	26:1:804:ASN:C	2.54	0.43
26:1:1029:GLU:O	26:1:1032:GLN:N	2.51	0.43
26:1:1110:VAL:O	26:1:1111:CYS:C	2.57	0.43
28:3:5:ASN:O	28:3:1176:GLY:HA3	2.19	0.43
35:N:560:ARG:O	35:N:564:ALA:O	2.33	0.43
2:D:298:ASP:O	2:D:299:ASP:C	2.56	0.43
20:H:64:A:H2'	20:H:65:U:C6	2.54	0.43
20:H:157:G:H2'	20:H:158:G:O4'	2.19	0.43
26:1:720:GLY:O	26:1:721:ILE:C	2.54	0.43
26:1:872:ILE:O	26:1:873:GLU:C	2.57	0.43
42:A:84:ASP:O	42:A:88:TYR:CA	2.66	0.43
42:A:379:GLU:O	43:C:355:LYS:CA	2.67	0.43
43:C:474:LEU:CA	43:C:498:SER:C	2.86	0.43
30:5:98:PHE:C	30:5:100:LYS:N	2.72	0.43
42:A:1502:PHE:O	42:A:1503:TRP:O	2.36	0.43
26:1:998:LYS:O	26:1:1001:VAL:N	2.51	0.43
3:E:255:MET:C	3:E:257:ASN:H	2.22	0.43
11:F:48:A:H2'	11:F:49:G:H8	1.84	0.43
11:F:91:A:H2'	11:F:92:A:H8	1.82	0.43
26:1:501:LEU:O	26:1:502:LEU:C	2.55	0.43
26:1:993:ILE:O	26:1:994:LEU:C	2.57	0.43
42:A:597:LYS:C	42:A:599:MET:N	2.72	0.43
11:F:89:U:H2'	11:F:90:G:C8	2.53	0.42
20:H:3:C:H2'	20:H:4:G:H8	1.84	0.42
26:1:665:ILE:O	26:1:668:VAL:N	2.52	0.42
26:1:833:LEU:O	26:1:834:VAL:C	2.56	0.42
42:A:838:LEU:O	42:A:839:LEU:C	2.57	0.42
42:A:1805:GLY:O	42:A:1822:ILE:N	2.45	0.42
19:G:128:U:H2'	19:G:129:G:H8	1.84	0.42
19:G:149:G:C8	19:G:150:U:O4	2.70	0.42
19:G:152:C:C2'	19:G:153:C:O5'	2.67	0.42
26:1:627:THR:O	26:1:630:ARG:N	2.52	0.42

	bus page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
19:G:137:C:H2'	19:G:138:A:C5'	2.49	0.42
26:1:981:TYR:O	26:1:983:GLY:N	2.52	0.42
40:I:21:U:OP2	40:I:21:U:H5	2.03	0.42
42:A:597:LYS:O	42:A:599:MET:N	2.51	0.42
11:F:92:A:H2'	11:F:93:G:C8	2.54	0.42
20:H:179:C:H2'	20:H:180:G:H8	1.83	0.42
26:1:889:GLU:O	26:1:890:GLU:C	2.57	0.42
40:I:90:G:H2'	40:I:91:A:C8	2.55	0.42
19:G:152:C:O2'	19:G:153:C:O4'	2.38	0.42
20:H:178:A:N3	20:H:178:A:H2'	2.34	0.42
26:1:429:ARG:O	26:1:432:THR:N	2.46	0.42
26:1:935:THR:O	26:1:936:VAL:C	2.58	0.42
1:B:31:U:H2'	1:B:32:C:H6	1.84	0.42
11:F:92:A:H2'	11:F:93:G:H8	1.83	0.42
30:5:51:GLY:HA3	30:5:56:THR:O	2.20	0.42
1:B:59:G:C2	1:B:60:G:C8	3.08	0.42
11:F:71:G:N2	40:I:4:U:O2	2.33	0.42
11:F:89:U:H2'	11:F:90:G:H8	1.84	0.42
20:H:107:A:N1	20:H:108:G:C5	2.88	0.42
26:1:854:VAL:O	26:1:856:ASP:N	2.52	0.42
40:I:125:G:N3	10:V:63:ASN:O	2.53	0.42
1:B:98:G:OP2	1:B:98:G:H8	2.03	0.42
19:G:155:U:O4'	19:G:156:U:C5	2.73	0.42
26:1:831:ARG:O	26:1:832:GLN:C	2.58	0.42
26:1:867:MET:O	26:1:868:VAL:C	2.57	0.42
34:K:333:PRO:O	34:K:334:SER:C	2.58	0.42
35:N:462:THR:O	35:N:466:ILE:N	2.38	0.42
40:I:14:G:H2'	40:I:15:G:C8	2.55	0.42
1:B:55:C:O2'	42:A:642:ARG:O	2.23	0.42
2:D:441:GLY:O	2:D:693:THR:N	2.36	0.42
19:G:135:G:C2	20:H:42:G:N1	2.87	0.42
26:1:578:ILE:O	26:1:579:GLU:C	2.57	0.42
42:A:1507:SER:O	42:A:1511:GLU:N	2.48	0.42
43:C:909:GLY:HA3	43:C:930:ALA:N	2.29	0.42
20:H:168:A:H3'	20:H:169:C:C6	2.54	0.42
26:1:631:ALA:O	26:1:632:PHE:C	2.58	0.42
39:W:344:ILE:CA	39:W:360:LEU:N	2.81	0.42
20:H:155:C:H2'	20:H:156:U:H5"	2.02	0.41
36:L:278:ASP:O	36:L:281:GLN:N	2.53	0.41
39:W:205:LEU:C	39:W:207:LYS:H	2.23	0.41
39:W:405:LYS:CA	42:A:789:GLU:CA	2.98	0.41

A 4 1	A 4 0	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
26:1:952:ALA:O	26:1:953:ASP:C	2.57	0.41
42:A:1593:LEU:O	42:A:1596:VAL:N	2.53	0.41
1:B:38:C:N4	1:B:39:C:N3	2.68	0.41
11:F:66:C:H2'	11:F:67:G:H8	1.85	0.41
20:H:153:A:H62	20:H:177:A:H2	1.67	0.41
26:1:318:ARG:O	26:1:321:ASP:N	2.52	0.41
26:1:1046:GLY:O	26:1:1048:GLU:N	2.52	0.41
39:W:338:LYS:O	39:W:339:LYS:O	2.38	0.41
19:G:125:C:OP2	19:G:125:C:C2	2.73	0.41
20:H:112:G:H8	20:H:112:G:O5'	2.04	0.41
26:1:1256:HIS:O	26:1:1257:PRO:C	2.58	0.41
1:B:26:A:N7	42:A:423:ASP:CA	2.83	0.41
20:H:152:G:H2'	20:H:153:A:C1'	2.51	0.41
26:1:758:ASP:O	26:1:761:TYR:N	2.54	0.41
28:3:437:VAL:O	28:3:776:GLN:CA	2.69	0.41
35:N:117:LYS:C	35:N:119:ARG:N	2.74	0.41
26:1:600:LEU:O	26:1:604:ALA:N	2.35	0.41
43:C:236:MET:O	43:C:237:LEU:C	2.59	0.41
20:H:153:A:H2'	20:H:154:C:H5"	1.99	0.41
26:1:841:ALA:C	26:1:843:LYS:N	2.73	0.41
26:1:1105:GLU:O	26:1:1106:ARG:C	2.59	0.41
32:7:64:VAL:O	32:7:65:ARG:C	2.59	0.41
1:B:26:A:N3	1:B:26:A:C5'	2.80	0.41
20:H:103:U:C3'	20:H:104:U:H5'	2.50	0.41
20:H:183:G:C6	20:H:184:C:N4	2.89	0.41
26:1:301:ARG:O	26:1:304:PRO:N	2.53	0.41
26:1:745:ALA:O	26:1:746:PHE:C	2.59	0.41
1:B:5:U:H2'	1:B:6:C:C6	2.56	0.41
1:B:75:G:H2'	1:B:76:A:C8	2.55	0.41
2:D:577:LYS:O	2:D:581:SER:N	2.54	0.41
3:E:255:MET:O	3:E:257:ASN:N	2.54	0.41
19:G:145:U:C3'	19:G:146:C:H5'	2.42	0.41
19:G:146:C:N3	19:G:147:C:N4	2.69	0.41
20:H:171:U:H2'	20:H:172:C:O4'	2.21	0.41
26:1:645:LEU:O	26:1:646:PRO:C	2.56	0.41
26:1:750:ILE:O	26:1:753:LEU:N	2.54	0.41
26:1:830:TYR:O	26:1:831:ARG:C	2.57	0.41
26:1:1169:VAL:O	26:1:1172:LEU:N	2.54	0.41
28:3:1148:LEU:O	28:3:1149:ARG:C	2.58	0.41
42:A:331:TRP:O	43:C:177:ARG:C	2.59	0.41
42:A:1952:VAL:O	42:A:1956:PRO:N	2.54	0.41

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
26:1:547:GLN:O	26:1:548:GLU:C	2.58	0.41	
26:1:862:GLU:O	26:1:864:TYR:N	2.53	0.41	
26:1:914:PHE:O	26:1:915:GLY:C	2.58	0.41	
26:1:1129:LEU:O	26:1:1130:PRO:C	2.59	0.41	
32:7:46:HIS:O	32:7:47:PHE:C	2.59	0.41	
40:I:107:U:H2'	40:I:108:C:H6	1.85	0.41	
43:C:756:LYS:O	43:C:757:ALA:C	2.58	0.41	
1:B:101:U:H2'	1:B:102:U:C6	2.56	0.40	
26:1:1128:VAL:O	26:1:1129:LEU:C	2.60	0.40	
26:1:1223:SER:O	26:1:1224:PRO:C	2.60	0.40	
43:C:684:LYS:O	43:C:795:VAL:N	2.45	0.40	
28:3:1193:VAL:O	28:3:1196:GLU:N	2.54	0.40	
35:N:736:LEU:O	35:N:740:PRO:N	2.54	0.40	
38:O:30:PHE:O	38:O:79:CYS:CA	2.69	0.40	
40:I:60:A:P	40:I:61:A:OP1	2.79	0.40	
29:4:20:LEU:O	29:4:55:GLY:HA2	2.21	0.40	
31:6:30:CYS:N	31:6:35:SER:O	2.38	0.40	
42:A:570:ASP:C	42:A:572:PHE:H	2.22	0.40	
43:C:684:LYS:N	43:C:795:VAL:O	2.55	0.40	
1:B:71:C:H2'	1:B:72:U:C6	2.55	0.40	
11:F:90:G:H2'	11:F:91:A:C8	2.57	0.40	
26:1:1013:ILE:O	26:1:1014:LYS:C	2.60	0.40	
35:N:289:ASN:N	42:A:871:TYR:O	2.54	0.40	
42:A:954:LYS:O	42:A:958:GLY:N	2.46	0.40	
42:A:1519:THR:C	42:A:1521:ALA:H	2.22	0.40	
19:G:149:G:C4	19:G:150:U:C5	3.09	0.40	
20:H:152:G:H2'	20:H:152:G:N3	2.36	0.40	
20:H:166:G:N3	20:H:166:G:H2'	2.37	0.40	
26:1:874:LYS:O	26:1:877:GLY:HA3	2.21	0.40	
40:I:14:G:H2'	40:I:15:G:H8	1.87	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	D	1868/2136~(88%)	1770~(95%)	93~(5%)	5~(0%)	41	76
3	Е	297/357~(83%)	272~(92%)	16~(5%)	9~(3%)	4	28
4	Р	70/118~(59%)	68~(97%)	2(3%)	0	100	100
4	a	74/118~(63%)	71 (96%)	3 (4%)	0	100	100
4	k	81/118~(69%)	78~(96%)	3 (4%)	0	100	100
5	Q	69/86~(80%)	67~(97%)	2 (3%)	0	100	100
5	b	71/86~(83%)	70~(99%)	1 (1%)	0	100	100
5	m	72/86~(84%)	68 (94%)	4 (6%)	0	100	100
6	R	76/92~(83%)	70~(92%)	6 (8%)	0	100	100
6	с	76/92~(83%)	70~(92%)	6 (8%)	0	100	100
6	1	77/92~(84%)	76~(99%)	1 (1%)	0	100	100
7	S	71/76~(93%)	67 (94%)	4 (6%)	0	100	100
7	d	67/76~(88%)	63 (94%)	4 (6%)	0	100	100
7	n	64/76~(84%)	62 (97%)	2 (3%)	0	100	100
8	Т	69/126~(55%)	69 (100%)	0	0	100	100
8	е	76/126~(60%)	73~(96%)	3 (4%)	0	100	100
8	h	76/126~(60%)	75~(99%)	1 (1%)	0	100	100
9	U	60/231~(26%)	57~(95%)	3(5%)	0	100	100
9	f	60/231~(26%)	57~(95%)	3 (5%)	0	100	100
9	i	69/231~(30%)	68~(99%)	1 (1%)	0	100	100
10	V	80/119~(67%)	76~(95%)	4 (5%)	0	100	100
10	g	89/119~(75%)	84 (94%)	5 (6%)	0	100	100
10	j	80/119~(67%)	77~(96%)	3 (4%)	0	100	100
12	q	88/95~(93%)	77 (88%)	7 (8%)	4 (4%)	2	22
13	r	71/102~(70%)	66 (93%)	3 (4%)	2(3%)	5	30
14	S	70/139~(50%)	64 (91%)	5 (7%)	1 (1%)	11	46
15	t	71/91~(78%)	64 (90%)	4 (6%)	3 (4%)	3	22
16	x	68/80~(85%)	66~(97%)	2 (3%)	0	100	100
17	У	61/103~(59%)	56 (92%)	5 (8%)	0	100	100
18	Z	57/96~(59%)	52 (91%)	4 (7%)	1 (2%)	8	40

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
21	О	160/255~(63%)	146 (91%)	12 (8%)	2(1%)	12	48
22	р	92/225~(41%)	90~(98%)	2 (2%)	0	100	100
23	u	118/793~(15%)	106 (90%)	6~(5%)	6~(5%)	2	19
24	v	91/464~(20%)	66 (72%)	16 (18%)	9 (10%)	0	9
25	W	431/501~(86%)	385~(89%)	41 (10%)	5 (1%)	13	49
26	1	1014/1304~(78%)	821 (81%)	171 (17%)	22~(2%)	6	35
27	2	174/895~(19%)	155 (89%)	14 (8%)	5(3%)	4	29
28	3	1160/1217~(95%)	1062 (92%)	90~(8%)	8 (1%)	22	62
29	4	76/424~(18%)	74 (97%)	2(3%)	0	100	100
30	5	106/125~(85%)	83 (78%)	20 (19%)	3~(3%)	5	30
31	6	87/110 (79%)	76 (87%)	11 (13%)	0	100	100
32	7	64/86~(74%)	55 (86%)	8 (12%)	1 (2%)	9	43
33	J	159/683~(23%)	148 (93%)	7~(4%)	4 (2%)	5	32
34	Κ	335/522~(64%)	295~(88%)	26~(8%)	14 (4%)	3	22
35	Ν	541/941~(58%)	475 (88%)	41 (8%)	25~(5%)	2	21
36	L	222/499~(44%)	214 (96%)	8 (4%)	0	100	100
37	М	123/128~(96%)	117 (95%)	6~(5%)	0	100	100
38	Ο	137/142~(96%)	126 (92%)	9~(7%)	2(2%)	10	45
39	W	461/565~(82%)	327 (71%)	77 (17%)	57 (12%)	0	5
41	Х	402/820~(49%)	393~(98%)	8 (2%)	1 (0%)	47	81
42	А	$2213/23\overline{35}\ (95\%)$	2046 (92%)	100 (4%)	67 (3%)	4	28
43	С	814/972~(84%)	751 (92%)	40 (5%)	23 (3%)	5	30
All	All	$131\overline{58}/19749~(67\%)$	11964 (91%)	915 (7%)	279 (2%)	10	36

All (279) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	D	354	PRO
2	D	957	VAL
2	D	1584	ILE
3	Е	193	THR
12	q	55	LEU
15	t	60	THR
15	t	61	PRO

Mol	Chain	Res	Type
15	t	70	ASP
23	u	301	PRO
24	V	139	PRO
24	V	160	GLU
24	V	161	PRO
24	V	162	PRO
24	V	165	ARG
24	V	218	PRO
25	W	284	ARG
26	1	113	ALA
26	1	208	PRO
26	1	416	PRO
26	1	418	PRO
26	1	456	VAL
26	1	941	ASN
26	1	1105	GLU
26	1	1110	VAL
27	2	597	PHE
28	3	406	PRO
30	5	99	GLN
33	J	541	VAL
34	K	171	PRO
34	K	227	GLN
34	K	334	SER
34	K	480	PRO
34	K	514	ARG
35	N	12	PRO
35	Ν	163	VAL
35	Ν	355	GLY
35	Ν	370	PRO
35	Ν	420	ARG
35	N	741	HIS
35	N	841	PRO
35	N	918	ASP
39	W	146	ARG
39	W	178	ASN
39	W	183	ASP
39	W	206	ASP
39	W	207	LYS
39	W	208	GLN
39	W	231	LYS
39	W	265	PRO

Mol	Chain	Res	Type
39	W	307	SER
39	W	340	LYS
39	W	345	VAL
39	W	350	GLN
39	W	355	ILE
39	W	360	LEU
39	W	361	PRO
39	W	364	ASP
39	W	394	ASP
39	W	406	GLU
39	W	411	PRO
39	W	414	PRO
39	W	415	LEU
39	W	419	LEU
39	W	458	THR
39	W	479	ASP
39	W	484	LEU
39	W	486	GLU
39	W	532	LEU
39	W	556	ASP
42	А	63	PRO
42	А	166	PHE
42	А	308	ILE
42	А	331	TRP
42	А	363	HIS
42	А	371	LEU
42	А	373	ASP
42	А	424	ILE
42	А	425	PRO
42	А	442	LYS
42	А	471	TYR
42	А	571	ALA
42	А	598	LEU
42	А	629	PHE
42	А	631	ALA
42	А	697	MET
42	А	698	PRO
42	А	799	PRO
42	А	1013	ASN
42	А	1124	ASN
42	А	1186	LEU
42	А	1202	THR

Mol	Chain	Res	Type
42	А	1511	GLU
42	А	1520	ASN
42	А	1521	ALA
42	А	1604	LEU
42	А	1760	GLU
42	А	2016	ILE
42	А	2018	ALA
43	С	333	ASP
43	С	388	VAL
43	С	427	PHE
43	С	444	GLY
43	С	457	VAL
43	С	458	ASP
43	С	475	MET
43	С	516	LEU
43	С	572	GLU
43	С	825	PRO
2	D	151	LYS
12	q	74	ALA
13	r	97	PRO
14	S	12	ASN
21	0	160	LYS
23	u	223	LYS
23	u	280	VAL
25	W	277	THR
28	3	772	ALA
30	5	104	LYS
34	Κ	198	LEU
34	K	265	LEU
35	N	150	ALA
35	N	824	PRO
35	N	840	ASP
39	W	105	CYS
39	W	107	TYR
39	W	186	LEU
39	W	211	LEU
39	W	339	LYS
39	W	341	LYS
39	W	365	LEU
39	W	380	GLN
39	W	395	LEU
39	W	457	PHE

Mol	Chain	Res	Type
39	W	462	PHE
39	W	502	ASN
39	W	531	ASP
41	Х	666	PRO
42	А	531	THR
42	А	729	PRO
42	А	767	VAL
42	А	1015	VAL
42	А	1092	ILE
42	А	1126	VAL
42	А	1185	LEU
42	А	1308	PRO
43	С	156	GLU
43	С	354	ARG
43	С	367	ARG
43	С	440	SER
43	С	824	THR
43	С	868	LEU
3	Е	60	MET
3	Е	88	ARG
3	Е	256	ASP
25	W	177	ARG
25	W	393	PRO
26	1	437	PRO
27	2	510	TYR
34	K	261	PRO
35	Ν	143	SER
35	N	774	PRO
38	0	74	GLU
39	W	400	LEU
39	W	410	ILE
39	W	417	ASN
39	W	466	LYS
39	W	509	PRO
42	А	212	PRO
42	A	376	GLU
42	А	381	PRO
42	A	709	ILE
42	A	734	PRO
42	A	824	PRO
42	А	1203	SER
42	А	$1\overline{204}$	TYR

Mol	Chain	Res	Type
42	А	1503	TRP
42	А	1677	GLU
42	А	1758	PRO
42	А	1947	ASN
43	С	237	LEU
43	С	615	PRO
3	Е	162	ARG
13	r	96	ALA
21	0	32	PRO
23	u	300	THR
26	1	112	ILE
26	1	523	ALA
26	1	909	VAL
26	1	1006	MET
27	2	463	ALA
27	2	599	THR
28	3	529	ALA
28	3	578	THR
30	5	75	ASP
33	J	535	GLU
33	J	536	ASP
33	J	615	ASP
34	K	229	GLY
34	K	259	SER
34	K	405	GLY
35	Ν	324	LYS
35	Ν	374	ARG
35	N	777	PRO
35	N	809	ASN
35	N	855	ARG
39	W	176	PRO
39	W	376	ASN
39	W	418	ILE
39	W	425	ILE
39	W	491	VAL
42	А	188	LEU
42	А	380	LEU
42	А	526	PRO
42	А	903	SER
42	А	1305	SER
43	С	856	HIS
3	Е	159	PRO

Mol	Chain	Res	Type
12	q	73	PRO
24	V	141	ILE
24	V	217	PRO
26	1	1075	ARG
26	1	1186	GLN
28	3	95	SER
28	3	229	GLU
35	N	421	ILE
39	W	337	THR
39	W	434	LYS
42	А	349	ALA
42	А	437	ALA
42	А	1206	GLU
43	С	360	ALA
43	С	573	GLU
3	Е	270	LYS
18	Z	34	ILE
24	V	220	PRO
26	1	326	THR
26	1	932	ILE
26	1	1047	ALA
28	3	407	ILE
35	Ν	307	HIS
35	Ν	325	LEU
38	0	77	ASP
39	W	357	THR
39	W	413	VAL
42	А	370	PRO
42	A	619	GLY
42	A	1198	PRO
42	А	1275	ARG
42	A	1955	LYS
42	A	2012	LEU
43	C	361	PRO
3	E	149	GLY
26	1	417	PRO
34	K	459	PRO
34	K	479	HIS
35	N	739	CYS
39	W	222	PRO
39	W	262	ILE
42	А	771	VAL

Mol	Chain	Res	Type
23	u	221	PRO
26	1	223	THR
42	А	358	PRO
42	А	1118	PRO
25	W	229	TRP
26	1	409	PRO
27	2	586	ILE
28	3	1204	VAL
34	K	446	PRO
35	N	323	GLY
35	N	369	LEU
2	D	585	ILE
3	Е	324	PRO
23	u	298	PRO
26	1	1031	VAL
32	7	64	VAL
42	А	894	VAL
12	q	52	PRO
35	N	743	THR
43	С	778	PRO

5.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	В	114/117~(97%)	38~(33%)	2(1%)
11	F	65/107~(60%)	10 (15%)	2(3%)
19	G	41/274~(14%)	28~(68%)	9(21%)
20	Н	105/188~(55%)	25~(23%)	2(1%)
40	Ι	112/144~(77%)	31 (27%)	4(3%)
All	All	437/830~(52%)	132 (30%)	19 (4%)

All (132) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	В	8	G
1	В	10	U
1	В	20	G

Mol	Chain	Res	Type
1	В	21	А
1	В	22	U
1	В	23	С
1	В	24	G
1	В	25	С
1	В	26	А
1	В	27	U
1	В	34	U
1	В	36	С
1	В	38	С
1	В	39	С
1	В	41	U
1	В	42	U
1	В	45	C
1	B	48	A
1	В	52	U
1	В	53	U
1	В	54	U
1	В	57	G
1	В	68	С
1	В	69	А
1	В	70	А
1	В	79	С
1	В	80	U
1	В	83	А
1	В	88	А
1	В	90	U
1	В	92	U
1	В	93	U
1	В	94	U
1	В	95	G
1	В	96	A
1	В	97	G
1	В	98	G
1	В	109	G
11	F	6	С
11	F	7	G
11	F	9	U
11	F	51	U
11	F	52	U
11	F	53	А
11	F	70	A

Mol	Chain	Res	Type
11	F	103	U
11	F	104	U
11	F	106	U
19	G	123	U
19	G	124	U
19	G	125	С
19	G	126	С
19	G	127	U
19	G	128	U
19	G	129	G
19	G	130	А
19	G	135	G
19	G	136	U
19	G	137	С
19	G	140	А
19	G	144	A
19	G	145	U
19	G	146	С
19	G	147	С
19	G	148	U
19	G	149	G
19	G	150	U
19	G	151	С
19	G	152	С
19	G	154	U
19	G	156	U
19	G	157	U
19	G	159	U
19	G	161	U
19	G	162	С
19	G	163	С
20	Н	31	G
20	Н	37	U
20	Н	40	С
20	Н	45	С
20	Н	47	U
20	Н	51	A
20	Н	65	U
20	Н	105	G
20	Н	106	G
20	Н	112	G
20	Н	143	А

Mol	Chain	Res	Type
20	Н	147	G
20	Н	152	G
20	Н	153	А
20	Н	154	С
20	Н	156	U
20	Н	157	G
20	Н	164	С
20	Н	166	G
20	Н	167	U
20	Н	168	А
20	Н	169	С
20	Н	177	А
20	Н	178	А
20	Н	179	С
40	Ι	21	U
40	Ι	25	А
40	Ι	26	G
40	Ι	36	U
40	Ι	41	С
40	Ι	44	А
40	Ι	45	G
40	Ι	56	U
40	Ι	58	С
40	Ι	59	U
40	Ι	60	А
40	Ι	61	А
40	Ι	62	U
40	Ι	84	С
40	Ι	85	G
40	Ι	90	G
40	Ι	100	A
40	Ι	103	A
40	Ι	109	G
40	Ι	114	U
40	Ι	115	G
40	Ι	118	A
40	Ι	119	A
40	Ι	120	U
40	Ι	121	U
40	Ι	122	U
40	Ι	124	U
40	Ι	125	G

Continued from previous page...

Mol	Chain	Res	Type
40	Ι	126	А
40	Ι	127	С
40	Ι	144	G

All ((19)	RNA	pucker	outliers	are	listed	below:
* * * * * I		101111	paonor	outitors	COL C	incoa	0010111

Mol	Chain	Res	Type
1	В	78	U
1	В	94	U
11	F	51	U
11	F	52	U
19	G	123	U
19	G	136	U
19	G	143	U
19	G	148	U
19	G	150	U
19	G	151	С
19	G	153	С
19	G	155	U
19	G	156	U
20	Н	156	U
20	Н	168	А
40	Ι	43	G
40	Ι	58	С
40	Ι	99	С
40	Ι	114	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 1 is monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	T inl.	Bond lengths			Bond angles		
INIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
45	GTP	С	1500	46	26,34,34	1.27	1 (3%)	$32,\!54,\!54$	1.62	3 (9%)
44	IHP	А	3000	-	36,36,36	0.82	0	54,60,60	1.20	2 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
45	GTP	С	1500	46	-	3/18/38/38	0/3/3/3
44	IHP	А	3000	-	-	6/30/54/54	0/1/1/1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
45	С	1500	GTP	C6-N1	-3.66	1.32	1.37

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
45	С	1500	GTP	PB-O3B-PG	-5.86	112.72	132.83
44	А	3000	IHP	C6-C5-C4	3.80	118.73	110.41
45	С	1500	GTP	PA-O3A-PB	-3.76	119.91	132.83
44	А	3000	IHP	C5-C4-C3	2.46	115.80	110.41
45	С	1500	GTP	C5-C6-N1	2.40	118.19	113.95

There are no chirality outliers.

All (9) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
44	А	3000	IHP	C2-O12-P2-O42
44	А	3000	IHP	C3-O13-P3-O23
45	С	1500	GTP	C5'-O5'-PA-O3A
44	А	3000	IHP	C6-O16-P6-O46
44	А	3000	IHP	C5-O15-P5-O25

Mol	Chain	Res	Type	Atoms
44	А	3000	IHP	C1-O11-P1-O31
44	А	3000	IHP	C4-O14-P4-O34
45	С	1500	GTP	PG-O3B-PB-O2B
45	С	1500	GTP	C5'-O5'-PA-O1A

There are no ring outliers.

1 monomer is involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
45	С	1500	GTP	4	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-9621. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200 $\,$

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 197

Y Index: 193

Z Index: 213 $\,$

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2784 $\rm nm^3;$ this corresponds to an approximate mass of 2515 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.175 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-9621 and PDB model 6AH0. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 63% of all backbone atoms, 63% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6260	0.1190
1	0.0190	0.0020
2	0.0360	0.0050
3	0.0000	-0.0030
4	0.0000	-0.0090
5	0.0000	-0.0110
6	0.0000	-0.0050
7	0.0000	0.0920
А	0.9900	0.2830
В	0.9360	0.1220
С	1.0000	0.2810
D	0.9740	0.1980
Е	0.7270	-0.0190
F	0.7860	0.1010
G	0.0000	0.0150
Н	0.0530	-0.0000
Ι	0.9330	0.1200
J	0.9580	0.0740
Κ	0.9940	0.0920
L	0.9870	0.1530
М	0.9900	0.2130
Ν	0.9580	0.1260
О	0.9750	0.2170
Р	0.9570	0.1190
Q	0.9210	0.0870
R	0.8920	0.0800
S	0.9230	0.1050
Т	0.9060	0.0760
U	0.9100	0.0820
V	0.9550	0.1500
W	0.9250	0.1840
X	0.9610	0.1200
a	0.9650	0.1010
b	0.8400	0.0480
с	0.9040	0.0990

Chain	Atom inclusion	Q-score
d	0.8760	0.1480
е	1.0000	0.2090
f	1.0000	0.1490
g	0.9290	0.1560
h	0.0000	0.0120
i	0.0000	-0.0140
j	0.0000	-0.0180
k	0.0000	0.0390
1	0.0000	0.0120
m	0.0000	0.0380
n	0.0000	0.0170
0	0.0000	-0.0050
р	0.0000	0.0060
q	0.0000	0.0370
r	0.0000	0.0420
S	0.0000	-0.0520
t	0.0000	-0.0050
u	0.0000	0.0100
V	0.0000	0.0170
W	0.0000	-0.0140
X	0.0000	0.0050
У	0.0000	0.0190
Z	0.0000	-0.0140

